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Topic RT3: Predictive Regressions for Returns

3.1 Introduction

▶ Testing for the predictability of asset returns has been the subject of
numerous studies in the applied economics and �nance literature,
assessing the predictive strength of a range of candidate predictor
variables, including valuation ratios, interest rates and other �nancial
and macroeconomic variables.

▶ Fama (1981) examines the predictability of stock returns using
various candidate predictors including interest rates, industrial
production, GNP and capital stock and expenditure.

▶ Campbell and Yogo (2006) [CY, hereafter] consider candidate
predictors that include the dividend and earnings price ratios, the
three-month T-bill rate and the long-short yield spread.

▶ The standard approaches to determining whether returns are
predictable are based on a simple linear predictive regression model
with a constant and lagged putative predictor, which we denote as
xt−1, with slope coe�cient β.
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▶ A common �nding in empirical studies into return predictability is
that the putative predictor is often both strongly persistent and
endogenous, with a non-zero (often strongly negative) correlation
between the errors in the predictive regression and the innovations
driving the predictor process; see, inter alia, CY and Welch and Goyal
(2008).

▶ In this situation Cavanagh et al. (1995) [CES] show that the
standard t test on the estimate of β su�ers from severe size
distortions that are a function of both the degree of persistence and
the endogeneity of the predictor.

▶ Let's investigate this a little further ...
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Is there any Predictability in the Equity Premium?
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Figure 1 - Dividend yield: Forward Recursive IV regression estimates and
pointwise CIs, 1950-2017 (Goyal-Welch 2008 updated monthly data).
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... what about the persistence of the predictor?
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The equity premium looks very mean reverting etc (almost noise), but the
dividend yield looks strongly persistent (usual ADF test has p-value of
0.41).
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The Basic Predictive Regression Set-up

Consider, for illustration, the very basic predictive regression

yt = α+ β xt−1 + ut (1)

where

(xt − µx) = ρ(xt−1 − µx) + et, (2)

with (ut, et)
′ ∼ iid(0,Σ) where

Σ = E

((
ut
et

)(
ut et

))
=

(
σ2u σue
σue σ2e

)
.

Null hypothesis: xt−1 does not predict yt, i.e.

H0 : β = 0 .

Yet, even in this simplest setup...
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Endogeneity and Strong Persistence

▶ The regression is subject to an endogeneity bias. This occurs where
the shocks ut and et are correlated. For the EP-DY data above the
endogeneity correlation, δ := σue/σuσe, is estimated to be
δ̂ = −0.98.

▶ The regressor xt−1 is strongly autocorrelated (as we saw a DF test
cannot reject a unit root in the predictor).

Under endogeneity and high persistence (near integration, ρ = 1− c/T),

▶ the OLS estimator is biased and

▶ the t-statistic has a non-normal limiting distribution.

See, among others, CES, Stambaugh (1999), CY.

No problem when regressor is weakly persistent.
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OLS t-statistics, T = 305
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OLS t-statistics (White se's), T = 305. Volatility of both
shocks 3 times higher in the �rst 20% of the sample ,
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▶ In the near-unit root case, the limiting null distributions of the
standard t-statistic for testing β = 0 in (1) depends on both δ and c,
whenever neither is zero.

▶ If ρ were known, one could employ GLS estimation. For unknown ρ,
there are a number of `solutions' proposed in the literature:

▶ Bonferroni - Cavanagh et al. (1995), Campbell and Yogo (2006)
▶ Restricted log-likelihood - Jansson and Moreira (2006, Econometrica)
▶ Almost optimal tests - Elliott et al. (2015, Econometrica)
▶ Generic IV estimation - Breitung and Demetrescu (2015, Jnl

Econometrics)
▶ Extended Instrumental Variables [IVX] method of Kostakis et al.

(2015, Review of Financial Studies) [KMS]
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▶ Arguably the most commonly employed of these is the Bonferroni Q
test proposed by CY. The method in CY is only valid for strongly
persistent predictors. It can only be used in the case of a single
predictor variable.

▶ We will review the CY method �rst before looking at approaches
based on instrumental variable estimation proposed in inter alia,
Kostakis et al. (2015) and Breitung and Demetrescu (2015). These
tests are valid regardless of whether the predictor is weakly or
strongly persistent and deliver standard limiting null distributions in
either case. Unlike the CY method, these methods can also be
implemented with multiple predictors.

▶ Monte Carlo simulations comparing these approaches and also the
test of Elliott et al. (2015) can be found in Harvey et al. (2021).
Some further predictability tests are also proposed in Harvey et al.
(2021).
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3.2 The Campbell-Yogo Q tests

▶ The Bonferroni Q test procedure of CY is based around computing a
con�dence interval for β using what is essentially a t-statistic
obtained from the predictive regression augmented by the covariate
(xt − ρxt−1).

▶ When xt is (near)-integrated, the local o�set c in ρ is not
consistently estimable, rendering the con�dence interval calculation
infeasible in practice.

▶ To overcome this problem, CY use a Bonferroni procedure, originally
proposed in CES, whereby a con�dence interval for ρ is �rst
constructed by inverting the quasi-GLS demeaned Dickey-Fuller
(ADF-GLS) unit root test of Elliott et al. (1996), that we reviewed
in Topic RT1, applied to the predictor, xt.
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▶ The bounds associated with this con�dence interval for ρ are then
used to deliver a feasible con�dence interval for β. This can then be
used to test the null hypothesis that β is equal to some speci�ed
value, usually zero.

▶ For strongly persistent predictors, CY show that the Bonferroni Q
test procedure has well controlled size and good power properties
regardless of the value of the non-centrality parameter c and the
degree of endogeneity of the predictor.
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CY's Predictive Regression Model

▶ CY consider the following predictive regression model

yt = α+ βxt−1 + ut, t = 1, ..., T (3)

where yt denotes the (excess) return in period t, and xt−1 denotes a
(putative) predictor observed at time t− 1.

▶ The DGP for xt is given by

xt = µ+ wt, t = 0, ..., T (4)

wt = ρwt−1 + vt, t = 1, ..., T. (5)

▶ CY focus on testing the null hypothesis of no predictability,
H0 : β = 0, against the right-sided alternative (positive
predictability) H1 : β > 0.
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Assumption 1

Assume that ψ(L)vt = et where ψ(L) :=
∑p−1

i=0 ψiL
i with ψ0 = 1 and

ψ(1) ̸= 0, with the roots of ψ(L) assumed to be less than one in absolute
value.

Assume that ξt := (ut, et)
′ is a bivariate martingale di�erence sequence

[MDS] satisfying the following conditions: (i) E[ξtξ
′
t] =

[
σ2
u σue

σue σ2
e

]
, (ii)

supt E[u4t ] <∞, and (iii) supt E[e4t ] <∞.

De�ne ω2
v := limT→∞ T−1E(

∑T
t=1 vt)

2 = σ2e/ψ(1)
2 to be the long run

variance of the error process {vt}, and δ := σue/σuσe as the correlation
between the innovations {ut} and {et}.
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▶ The assumptions placed on ξt allow the sequence of innovations to
be conditionally heteroskedastic (e.g. GARCH). The MDS aspect of
Assumption 1 implies the standard assumption made in the literature
that the unpredictable component of returns, ut, is serially
uncorrelated.

▶ Assumption 1 allows the dynamics of the predictor variable to be
captured by an AR(p), with the degree of persistence of the
predictor (strong or weak) controlled by the parameter ρ in (5).

▶ CY assume that the predictor {xt} is strongly persistent, with the
autoregressive parameter ρ in (5) given by ρ = 1− c/T with c a
�nite non-zero constant. In the operational version of their statistic
they impose that c ∈ [−5, 50].

▶ The predictor is weakly persistent if |ρ| < 1, independent of T .

▶ CY assume that the initial condition is given by w0 = op(T
1/2), so

that it is asymptotically negligible.
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CY's Q Test

▶ CY propose testing for predictability based on Bonferroni procedures
that make use of con�dence intervals for the unknown autoregressive
parameter ρ = 1− c/T , with these con�dence intervals constructed
by inverting unit root tests.

▶ In the infeasible case where ρ is assumed known, CY derive an
optimal test for H0 against H1 which rejects for large values of the
likelihood ratio statistic:

Q(0, ρ) :=

∑T
t=1 x

µ
t−1

[
yt − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue
σeωv

(ω2
v − σ2v)√

σ2u(1− δ2)
∑T

t=1(x
µ
t−1)

2

where xµt−1 := xt−1 − T−1
∑T

s=1 xs−1, and σ
2
v denotes the short run

variance of vt.

▶ For known ρ, Q(0, ρ) has a standard normal limiting null distribution.
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▶ A 100(1− α)% con�dence interval for β can then be derived based
on the quantity Q(0, ρ) and is given by [β(ρ, α), β(ρ, α)] where

β(ρ, α) = {Q(0, ρ) + zα/2}s
√
1− δ2,

β(ρ, α) = {Q(0, ρ)− zα/2}s
√
1− δ2

where s2 := σ2u/
∑T

t=1(x
µ
t−1)

2 and zα/2 denotes the α/2 quantile of
the standard normal distribution.

▶ But in practice ρ = 1− c/T is unknown and c cannot be consistently
estimated, so this approach infeasible.

▶ In order to obtain an asymptotically size controlled test with good
power across di�erent values of c, CY propose using a con�dence
interval for ρ obtained by inverting the quasi-GLS demeaned
ADF-GLS t-ratio based unit root test of Elliott et al. (1996) applied
to xt (allowing for p− 1 lagged di�erence terms, as per Assumption
1), using pre-computed (asymptotic) con�dence belts.
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▶ To prevent the resulting con�dence interval for β from su�ering
excess coverage, CY further propose a re�nement whereby the
signi�cance level used to obtain the con�dence interval for ρ is
adapted to upper and lower bounds separately, and also according to
the value of δ.

▶ Values of this signi�cance level are chosen numerically to minimise
over-coverage associated with the con�dence interval for β, while
ensuring that the overall Bonferroni test size does not exceed a
chosen level across a speci�ed range of c.

▶ Denoting the signi�cance levels for the lower and upper con�dence
bounds for ρ by α1 and α1, respectively, the con�dence interval for ρ
can be written as [ρ(α1), ρ(α1)], and the resulting 100(1− α2)%

con�dence interval for β is obtained as [β(ρ(α1), α2), β(ρ(α1), α2)]
where

β(ρ(α1), α2) = {Q(0, ρ(α1)) + zα2/2}s
√

1− δ2,

β(ρ(α1), α2) = {Q(0, ρ(α1))− zα2/2}s
√

1− δ2.
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▶ For a given value of δ, the resulting one-sided tests have an
asymptotic size of exactly α2/2 for some value of c while remaining
slightly undersized for other values of c. Consequently, two-sided
tests will have size of at most α2 across the speci�ed range of c. CY
calibrate this procedure by �xing α2 = 0.1 and consider c ∈ [−5, 50]
such that their resulting one-sided tests have a maximum
(asymptotic) size of 5%. The appropriate values of α1 and α1 are
given in Table 2 (p.40) of CY.

▶ These values of α1 and α1 are only provided for δ < 0. For δ > 0,
CY note that replacing xt in (3) with −xt �ips the sign of both β
and δ. Therefore, an equivalent right (left) tailed test for
predictability when δ > 0 can be performed as a left (right) tailed
test for predictability based on (3) with xt replaced by −xt using the
values of α1 and α1 appropriate for a negative value of δ.

▶ In practice δ is unknown but can be consistently estimated. Use the
values from Table 2 corresponding to this estimate.
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▶ For full details on the practical implementation of the CY procedure,
including consistent estimation of the parameters σe, σu, σv, σue, ωv

and δ, implementation of the ADF-GLS unit root tests, and the
pre-computed con�dence belts, see CY and the corresponding
supplementary material to CY available at

https://scholar.harvard.edu/campbell/publications/implementing-

econometric-methods-e�cient-tests-stock-return-predictability-0
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3.3 Instrumental Variable based Approaches

▶ We will next review two alternative approaches to the approach
taken in CY. While CY use a Bonferroni-based correction of
likelihood ratio-type statistics to control asymptotic size in the
presence of endogenity and strong persistence, an alternative
approach is to modify the estimation method used to estimate the
parameters of the predictive regression in (3).

▶ As we have seen the problem is one of an endogenous strongly
persistent predictor. From standard econometric theory we know
that instrumental variable estimation is the classic solution to
problems of endogeneity.

▶ Kostakis et al. (2015) [KMS] propose an exactly-identi�ed IV
solution, while Breitung and Demetrescu (2015) [BD] propose an
over-identi�ed two-stage least squares [2SLS] approach. Both are
valid for both strongly and weakly persistent predictors, and both can
be implemented with multiple predictors. We will review them in
turn, starting with BD.

22 / 63



Uncertain Persistence

▶ For both the KMS and BD methods, we can now make the following
much weaker assumption on ρ in (5).

Assumption 2

One of the following two conditions is assumed to hold:

1. Weakly persistent predictors: The autoregressive parameter ρ in (5) is
�xed and bounded away from unity, |ρ| < 1.

2. Strongly persistent predictors: The autoregressive parameter ρ in (5) is
local-to-unity with ρ := 1− c

T where c is a �xed non-negative constant.

▶ In fact the predictor can also be allowed to be mildly integrated which
is a class of persistence between strongly and weakly persistent.

23 / 63



IV Estimation

▶ BD discuss IV estimation using a vector zt of instruments. They
recommend basing tests on a 2SLS-based estimate, using two
instruments per predictor (over-identi�ed):

1. a so-called type-I instrument, zI,t, that is less persistent than xt,
2. a so-called type-II instrument, zII,t, that is persistent yet exogenous.

▶ In contrast KMS's IV estimation uses a single instrument for each
predictor (just-identi�ed).
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Instruments in practice

BD suggest using a vector of two instruments per predictor e.g.:

zI,0 = 0, zI,t :=

t−1∑
j=0

ϱj∆xt−j , t = 1, ..., T

where ϱ := 1− a
T γ with γ ∈ (0, 1) and a ≥ 0, and

zII,t := sin

(
πt

2T

)
.

▶ zI,t is the IVX instrument of KMS.

▶ zII,t essentially delivers a spurious correlation with the strongly
persistent xt.

▶ Both satisfy generic high-level conditions for the instruments to be
valid which are given in BD. BD discuss other possible choices.
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The IVX trick applied to a random walk - using a = 1,
γ = 0.95 as in Kostakis et al. (2015)
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The 2SLS Test of BD

▶ For the case of a single predictor, the 2SLS t-ratio of BD (with
Eicker-White standard errors) is given by:

tβ :=
A′

TB
−1
T CT√

A′
TB

−1
T DTB

−1
T AT

(6)

where

AT :=

T∑
t=1

x̂t−1ẑt−1, BT :=

T∑
t=1

ẑt−1ẑ
′
t−1,

CT :=

T∑
t=1

ẑt−1ŷt, and DT :=

T∑
t=1

ẑt−1ẑ
′
t−1û

2
t ,

and ŷt, x̂t−1 and ẑt−1 are demeaned versions of yt, xt−1 and zt−1.
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▶ BD show that a necessary consequence of using over-identi�ed IV
inference with strictly exogenous instruments is that the 2SLS test
cannot be used to test against one-sided alternatives. Consequently
the appropriate form of the test is to reject for large values of the
Wald statistic, (tβ1)

2.

▶ BD show that (tβ1)
2 has a limiting χ2(1) distribution, even when ξt

displays unconditional and/or conditional heteroskedasticity
(regularity conditions assumed).
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The IVX Test of KMS

In the case of a single predictor, the IVX-based t-ratio of KMS for testing
H0 : β = 0 in (3), instruments the endogenous predictor xt−1 with the
IVX instrument zI,t−1, and is given by

tzx :=
β̂zx

s.e.(β̂zx)
(7)

where β̂zx is the IVX estimator of β,

β̂zx :=

∑T
t=1 zI,t−1 (yt − ȳ)∑T

t=1 zI,t−1 (xt−1 − x̄−1)
(8)

with ȳ := T−1
∑T

t=1 yt and x̄−1 := T−1
∑T

t=1 xt−1, and

s.e.(β̂zx) :=

√
σ̂2u

∑T
t=1 z

2
I,t−1∑T

t=1 zI,t−1 (xt−1 − x̄−1)
(9)

with σ̂2u = T−1
∑T

t=1 û
2
t .
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▶ A variety of choices for the residuals ût in these procedures is
possible. KMS recommend using the OLS residuals from estimating
(3). One could also use residuals computed under the null; that is,
ût := yt − 1

T

∑T
s=1 ys, or use IV residuals.

▶ One-sided tests based on tzx can be formed by rejecting against the
right-sided alternative that β > 0 for large positive values of the
statistics and against the left-sided alternative that β < 0 for large
negative values of the statistics. The latter can be equivalently
implemented as right-sided tests simply by replacing the predictor
xt−1 by −xt−1.

▶ Two-sided tests can be formed by rejecting against the alternative
that β ̸= 0 for large positive values of (tzx)

2.

▶ So the KMS tests have the advantage over the BD tests that they
can be implemented as one-sided tests. This may therefore confer a
power advantage in cases where �nance theory predicts the sign of
the slope parameter on xt−1 under predictability.
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▶ KMS implement a �nite sample correction factor to correct for the
�nite sample e�ects of estimating the intercept term in (3). Details
can be found in KMS and will be discussed in the class exercise.

▶ In the case where unconditional and/or unconditional
heteroskedasticity is allowed for, the conventional standard error,
s.e.(β̂zx), in (7) must be replaced by the corresponding Eicker-White
(heteroskedasticity-robust) standard error. This is given by

tEW
zx :=

β̂zx

s.e.EW (β̂zx)
, s.e.EW (β̂zx) :=

√∑T
t=1 z

2
t−1û

2
t∑T

t=1 zt−1 (xt−1 − x̄−1)
.

▶ For a predictive regressions with multiple regressors, joint Wald (F )
tests can be formed in the usual way with an IVX instrument formed
for each regressor. However, the predictors all need to belong to the
same persistence type.

▶ KMS show that their IVX statistics have standard limiting null
distributions (standard normal/χ2(1)) for the case of one predictor,
as above, and χ2(K) for K predictors) regardless of whether xt is
strongly or weakly persistent.
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3.4 Bootstrap IVX Tests

▶ Demetrescu et al. (2023a, Jnl Econometrics) [DGRT] show that, in
the case of a single predictor, although the two-sided IVX tests
proposed in KMS have good size control, one-sided tests do not.
They also show that the �nite sample size control of the IVX tests
worsens as the number of predictors increases, other things equal.

▶ Consequently, DGRT explore two possible bootstrap implementations
of KMS's IVX tests. The �rst, a residual wild bootstrap [RWB]. The
second is a �xed regressor wild bootstrap [FRWB].

▶ DGRT show that both of these bootstrap methods are
asymptotically valid and under weaker conditions on the errors, ξt,
than are imposed by KMS.

32 / 63



A Residual Wild Bootstrap

1. Fit the predictive regression (3) to the sample data (yt, xt−1)
′ to

obtain the residuals ût, t = 1, ..., T .

2. Fit by OLS an autoregression of order p+ 1 to xt; viz,

xt = m̂+

p+1∑
j=1

âjxt−j + v̂t

and compute the OLS residuals v̂t, t = p+ 1, . . . , T . Set v̂t = 0 for
t = 1, . . . , p.

3. Generate bootstrap innovations (u∗t , v
∗
t )

′ = (Dtût, Dtv̂t)
′,

t = 1 . . . , T , where Dt, t = 1, ..., T , is a scalar i.i.d.(0, 1) sequence
with E(D4

t ) <∞, which is independent of the sample data.
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4 De�ne the bootstrap data (y∗t , x
∗
t−1)

′ where y∗t = u∗t (so that the
null hypothesis is imposed on the bootstrap y∗t ) and where x∗t is
generated according to the recursion

x∗t =

p+1∑
j=1

âjx
∗
t−j + v∗t , t = 1, ..., T

with initial conditions x∗0 = . . . = x∗−p = 0. Create the associated
bootstrap IVX instrument, z∗t , as:

z∗I,0 = 0 and z∗I,t =

t−1∑
j=0

ϱj∆x∗t−j , t = 1, . . . , T,

where ϱ is the same value as used in constructing the original IVX
instrument, zt.

5 Using the bootstrap sample data,
(
y∗t , x

∗
t−1, z

∗
I,t−1

)′
, in place of the

original sample data, (yt, xt−1, zI,t−1)
′, construct the bootstrap

analogues of the IVX statistics.
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A Fixed-Regressor Wild Bootstrap

1. Construct the wild bootstrap innovations y∗t = ŷtDt, where
ŷt = yt − 1

T

∑T
t=1 yt are the demeaned sample observations on yt.

2. Using the bootstrap sample data
(
y∗t , xt−1, z

′
I,t−1

)′
, in place of the

original sample data
(
yt, xt−1, z

′
I,t−1

)′
, construct the bootstrap

analogues of the IVX statistics.
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Key Di�erences?

▶ A key di�erence between the RWB and FRWB surrounds the
generation of the bootstrap analogue data for xt and zI,t. While the
RWB rebuilds into the bootstrap data (an estimate of) the
correlation between the innovations ut and vt (it is crucial in doing
so that the same Dt is used to multiply both ût and v̂t), the FRWB
does not. This is an important distinction because the �nite sample
behaviour of the IVX statistics is heavily dependent on the
correlation between ut and vt when xt is strongly persistent.

▶ A further di�erence is that because the RWB uses the bootstrap data
x∗t and z∗I,t, one is implicitly using an estimate of ρ. Under strong
persistence c, cannot be consistently estimated and so x∗t will not be
generated with the same local-to-unity parameter as xt. However,
the IVX statistics instrument xt−1 by zI,t−1, and their bootstrap
analogues instrument x∗t−1 by z∗I,t−1. But both zI,t and z

∗
I,t are, by

construction, mildly integrated processes, regardless of the value of c.
There is therefore no necessity for the estimate of c to be consistent.
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Monte Carlo Results from DGRT I

Case 1: Empirical Size: Scalar Predictor, IID errors

▶ DGP (3)-(5) with β = 0. Set α = µ = 0, w.n.l.o.g.

▶ ρ := 1− c/T with c ∈ {−0.5,−0.25, 0, 2.5, 5, 10, 25, ..., 250}
▶ (ut, vt)

′ is zero-mean IID bivariate Gaussian with covariance matrix

Σ :=

[
1 δ
δ 1

]
and δ = −0.95

▶ IVX with a = 1, γ = 0.95, and KMS's �nite-sample correction

▶ Report: t∗,RWB
zx and t∗,FRWB

zx (RWB and FRWB implementations of
tzx); t

EW
zx (asymptotic IVX test with conventional ses) and tzx

(asymptotic IVX test with White ses)

▶ T = 250, 10000 MC replications, 999 bootstrap replications with
Dt ∼ NIID(0, 1). Nominal 5% level. In Step 2 of RWB p chosen
by BIC over the search set p ∈ {0, ..., ⌊4(T/100)0.25⌋}.
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Table 1: Size of Left-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEW
zx tzx

-5 0.046 0.004 0.004 0.003
-2.5 0.045 0.000 0.000 0.001

0 0.041 0.001 0.001 0.001
2.5 0.062 0.005 0.005 0.005
5 0.068 0.010 0.011 0.010
10 0.064 0.019 0.019 0.018
25 0.057 0.029 0.030 0.028
50 0.056 0.034 0.036 0.035
75 0.056 0.037 0.038 0.037
100 0.054 0.038 0.040 0.038
125 0.054 0.039 0.042 0.041
150 0.055 0.043 0.046 0.042
200 0.054 0.046 0.048 0.045
250 0.054 0.048 0.051 0.048
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Table 2: Size of Right-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEW
zx tzx

-5 0.046 0.074 0.080 0.073
-2.5 0.041 0.094 0.097 0.093

0 0.053 0.105 0.114 0.110
2.5 0.064 0.112 0.116 0.115
5 0.062 0.107 0.116 0.112
10 0.062 0.097 0.102 0.099
25 0.057 0.078 0.084 0.080
50 0.052 0.067 0.072 0.067
75 0.053 0.064 0.068 0.065
100 0.053 0.061 0.065 0.062
125 0.052 0.060 0.063 0.060
150 0.053 0.056 0.060 0.059
200 0.050 0.054 0.056 0.053
250 0.051 0.051 0.055 0.053
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Table 3: Size of Two-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEW
zx tzx

-5 0.048 0.038 0.044 0.039
-2.5 0.038 0.040 0.048 0.044

0 0.047 0.051 0.057 0.053
2.5 0.053 0.058 0.062 0.060
5 0.054 0.058 0.063 0.060
10 0.055 0.060 0.066 0.060
25 0.056 0.056 0.060 0.058
50 0.051 0.051 0.054 0.052
75 0.049 0.047 0.052 0.049
100 0.049 0.048 0.052 0.050
125 0.050 0.049 0.053 0.051
150 0.051 0.049 0.054 0.052
200 0.050 0.048 0.054 0.050
250 0.049 0.048 0.053 0.050
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Monte Carlo Results from DGRT II

Case 2: Empirical Size: Multiple Predictors

▶ Multiple predictor simulation DGP:

yt = α+ x′
t−1β + ut, t = 1, . . . , T,

xt = ρxt−1 + vt, t = 0, . . . , T,

where xt := (x1,t, ..., xK,t)
′ is a K × 1 vector of predictor variables,

β is a K × 1 vector of parameters, α = 0.25, ρ is a K ×K diagonal
matrix with common diagonal element ρ, i.e., ρ := diag(ρ, ..., ρ).

▶ The AR parameter ρ is again set equal to 1− c/T with
c ∈ {−5,−2.5, 0, 2.5, 5, 10, 25, ..., 250}
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▶ The innovations are generated as (ut,v
′
t)
′ ∼ NIID(0,Σ) where

Σ =


σ2u σu,v1 0 · · · 0
σu,v1 σ2v1 0 · · · 0
0 0 σ2v2 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2vK

 (10)

with σ2u = 0.037, σu,v1 = −0.035, σ2v1 = ... = σ2vK = 0.045.

▶ Notice, therefore, that the �rst predictor, x1,t is endogenous (with an
endogeneity correlation parameter ϕ1 = −0.83), while the remaining
predictors x2,t, ..., xK,t are exogenous.

▶ Empirical sizes of the Wald tests for the joint signi�cance of the K
predictors. NB RWB uses obvious VAR generalisation of Step 2.

42 / 63



Table 4: Size of joint Wald Tests.

K = 3 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.085 0.352 0.385 0.366
-2.5 0.097 0.176 0.193 0.177

0 0.075 0.105 0.117 0.104
2.5 0.067 0.086 0.103 0.090
5 0.059 0.077 0.095 0.083
10 0.054 0.066 0.083 0.071
25 0.052 0.061 0.075 0.066
50 0.053 0.057 0.070 0.061
75 0.053 0.053 0.069 0.058
100 0.051 0.053 0.069 0.057
125 0.052 0.054 0.070 0.058
150 0.052 0.054 0.069 0.058
200 0.052 0.055 0.071 0.059
250 0.053 0.055 0.071 0.060

43 / 63



Table 5: Size of joint Wald Tests.

K = 5 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.074 0.402 0.466 0.421
-2.5 0.091 0.239 0.281 0.241

0 0.082 0.157 0.186 0.156
2.5 0.069 0.120 0.156 0.129
5 0.063 0.105 0.138 0.116
10 0.062 0.086 0.120 0.098
25 0.053 0.067 0.100 0.080
50 0.052 0.059 0.089 0.069
75 0.051 0.055 0.085 0.063
100 0.049 0.053 0.082 0.062
125 0.049 0.053 0.080 0.062
150 0.046 0.052 0.078 0.061
200 0.047 0.051 0.079 0.060
250 0.044 0.049 0.077 0.058
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Table 6: Size of joint Wald Tests.

K = 10 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.058 0.513 0.635 0.559
-2.5 0.072 0.398 0.505 0.425

0 0.087 0.306 0.406 0.324
2.5 0.075 0.238 0.342 0.262
5 0.067 0.191 0.301 0.225
10 0.060 0.141 0.244 0.175
25 0.050 0.089 0.174 0.118
50 0.048 0.067 0.142 0.091
75 0.046 0.060 0.129 0.081
100 0.046 0.056 0.120 0.077
125 0.043 0.053 0.117 0.074
150 0.042 0.052 0.116 0.071
200 0.039 0.049 0.116 0.070
250 0.036 0.050 0.116 0.072
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3.5 Subsample Implementation of the KMS Test:
Detecting Pockets of Predictability

▶ The testing approaches discussed so far are based on a maintained
assumption that the slope coe�cient β in (3) is constant over time.
However, there are several reasons to suspect that if returns are
predictable, then it is likely to be a time-varying phenomenon. The
business cycle, time-varying risk aversion, rare disasters, structural
breaks, speculative bubbles, investor's market sentiment, and regime
changes in monetary policy have all be cited as possible reasons.

▶ Timmermann (2008) argues that for most time periods returns are
not predictable but that there can be pockets in time where evidence
of predictability is seen. If a variable begins to have predictive power
for returns then a window of predictability might exist before
investors learn about that relationship, but it will eventually
disappear.
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▶ It therefore seems reasonable to consider the possibility that the
predictive relationship might change over time, so that over a long
span of data one may observe some temporary window(s) of time
during which predictability occurs.

▶ The assumption in (3) that β is constant across the sample implies
that under the alternative hypothesis xt−1 is predictive for yt across
the whole sample. Look again at Figure 1. Here we would be able to
reject the null of no predictability if the data ended at, for example,
1990M1 (because here the con�dence interval for the slope does not
include zero) but we cannot reject the null based on the whole sample
(because zero is now in the con�dence interval). So full sample tests
may not be well suited to detecting pockets of predictability.

▶ So can we do any better than the full sample tests if we allow the
slope parameter β in (3) to be time-varying? Let's call it βt.
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▶ If it were known that a pocket of predictability might occur only over
the particular subsample t = ⌊τ1T ⌋+ 1, . . . , ⌊τ2T ⌋, 0 ≤ τ1 < τ2 ≤ 1,
such that βt = β ̸= 0 for t = ⌊τ1T ⌋+ 1, . . . , ⌊τ2T ⌋ but was zero
elsewhere, then it would be more logical to base a test for this on the
IVX statistic computed only on the subsample
t = ⌊τ1T ⌋+ 1, . . . , ⌊τ2T ⌋. With an obvious notation denote this
statistic as tzx(τ1, τ2), and the corresponding subsample analogue of
the full sample Eicker-White tEW

zx statistic denoted tEW
zx (τ1, τ2).

▶ In practice it is unlikely to be known which speci�c subsample(s) of
the data might admit predictive regimes. Tests based on forward and
reverse recursive sequences and rolling sequences might therefore be
useful, as they were with bubble detection methods in Topic RT2.
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▶ Tests based on the forward recursive sequence of statistics are
designed to detect pockets of predictability which begin at or near
the start of the full sample period, while those based on the reverse
recursive sequence are designed to detect end-of-sample pockets of
predictability. For a given window width, tests based on a rolling
sequence of statistics are designed to pick up a window of
predictability, of (roughly) the same length, within the data.

▶ DGRT propose tests based on these sequences of subsample
statistics. We will formally de�ne these on the next slide. We will
outline these for the case of IVX statistics computed with
conventional standard errors, but these can also be implemented with
Eicker-White standard errors by replacing tzx(·, ·) with tEW

zx (·, ·)
throughout.
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• The sequence of forward recursive statistics is given by
{tzx(0, τ)}τL≤τ≤1, where the parameter τL ∈ (0, 1) is chosen by the user.
The forward recursive regression approach uses ⌊TτL⌋ start-up
observations, where τL is the warm-in fraction, and then calculates the
sequence of subsample predictive regression statistics tzx(0, τ) for
t = 1, ..., ⌊τT ⌋, with τ travelling across the interval [τL, 1]. An
upper-tailed test can then be based on the maximum taken across this
sequence, viz,

T F
U := max

τL≤τ≤1
{tzx(0, τ)}. (11)

The corresponding left-tailed test can be based on the minimum across
this sequence, denoted T F

L , and a two-tailed test can be based on the
corresponding maximum taken over the sequence of (tzx(0, τ))

2 statistics,
denoted T F

2 .
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• The sequence of backward recursive statistics is given by
{tzx(τ, 1)}0≤τ≤τU with τU ∈ (0, 1) again chosen by the user. Here one
calculates the sequence of subsample predictive regression statistics
tzx(τ, 1) for t = ⌊τT ⌋+ 1, ..., T , with τ travelling across the interval
[0, τU ]. Analogously to the forward recursive case, an upper-tailed test
can again be based on the maximum from this sequence,

T B
U := max

0≤τ≤τU
{tzx(τ, 1)} (12)

while corresponding lower-tailed tests and two-sided tests can be formed
from the statistics T B

L and T B
2 , de�ned analogously to the forward

recursive case.

51 / 63



• The sequence of rolling statistics is given by
{tzx(τ, τ +∆τ)}0≤τ≤1−∆τ where the user-de�ned parameter ∆τ ∈ (0, 1).
Here one calculates the sequence of subsample statistics tzx(τ, τ +∆τ)
for t = ⌊τT ⌋+ 1, ..., ⌊τT ⌋+ ⌊T∆τ⌋, where ∆τ is the window fraction
with ⌊T∆τ⌋ the window width, with τ travelling across the interval
[0, 1−∆τ ]. An upper-tailed test can again be based on the maximum
from this rolling sequence,

T R
U := max

0≤τ≤1−∆τ
{tzx(τ, τ +∆τ)} (13)

while corresponding lower-tailed tests and two-sided tests can again be
formed from the statistics T R

L and T R
2 , de�ned analogously to the

recursive cases.
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▶ DGRT show that these subsample predictability tests can only be
validly implemented (i.e. with controlled asymptotic size) using either
the RWB or the FRWB discussed previously for the full sample IVX
tests.

▶ As discussed in Pavlidis et al (2017), subsample implementations of
KMS's right-tailed IVX predictability tests can be used to test for the
presence of a speculative bubble in exchange rates. They do not �nd
evidence of a bubble. DGRT revisit an application in Pavlidis et al
(2017) with an updated dataset and using their proposed bootstrap
subsample maximum tests and �nd evidence of a bubble in the
UK/US exchange rate which crashed in 2016.

▶ Demetrescu et al. (2022) also consider tests for episodic
predictability based on the maxima from corresponding sequences of
rolling and recursive subsample implementations of the 2SLS
predictability statistics of BD discussed in section 3.3. Again these
have the disadvantage that they cannot be used for one-tailed
testing.
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3.6 Long-Horizon Predictive Regressions

▶ There has been an increasing interest in long-horizon predictive
regressions, because a number of studies using long-horizon variables
seem to �nd signi�cant results where previous short-run predictive
regression models, like those we have considered so far, fail to do.
Some of the most important among these studies are listed in the
literature review given in section 1 of Valkanov (2003).

▶ The results in the aforementioned studies are based on long-horizon
variables, where the long-horizon variable is a rolling sum of the
original series. In the literature, it is heuristically argued that
long-run regressions produce more accurate results by strengthening
the signal coming from the data while eliminating the noise.

▶ We will very brie�y review long-horizon methods.

54 / 63



▶ In the long-horizon literature you'll see that they end to write the
short-run predictive regression that we have encountered so far with
the time index shifted one-period forward, i.e., the short-run (one
period) predictive recursive system,

yt+1 = α1 + β1xt + ut+1, t = 1, . . . , T − 1, (14)

xt+1 = µ+ wt+1, and wt+1 = ρwt + vt+1 (15)

where yt+1 is, for example, a continuously compounded excess return
of an asset or the variation of a nominal exchange rate from t to
t+ 1 and xt+1 is some (putative) predictor variable.

▶ This is just a cosmetic shift in the time-index, and α and β relabeled
as α1 and β1 respectively; it's essentially the same DGP as we had
before. This is termed the short-horizon or short-run predictive
regression model in the literature.
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▶ The most common long-horizon predictive regression speci�cation
used in empirical analysis results from the h-period, h ≥ 1, temporal
aggregation of (14) and is given by

y
(h)
t+h = αh + βhxt + errort+h, t = 1, . . . , T − h (16)

where y
(h)
t+h :=

∑h
j=1 yt+j is the h-period cumulative variable to be

predicted.

▶ Notice that for h = 1, (16) is simply the short-horizon predictive
regression in (14). To gain further insight into the speci�c features
of (16), let us examine the h-horizon cumulated dependent variable

y
(h)
t+h more closely.
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▶ From (14), the long-horizon predictive model can be written as,

y
(h)
t+h = hα1 + β1

h−1∑
j=0

xt+j + u
(h)
t+h, (17)

where u
(h)
t+h :=

∑h
j=1 ut+j .

▶ Recall that the short-horizon predictability testing methods we have
discussed are all based on the assumption that the error term in the
predictive regression is serially uncorrelated.

▶ It is clear from (17) that this condition is violated in long-horizon
case because serial correlation is induced into the error term in the
long-horizon predictive regression, arising from the temporal
aggregation of the dependent variable.

▶ The methods developed for short-horizon predictability testing
cannot therefore be validly used for h > 1.
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▶ To address this issue, Valkanov (2003) and Hjalmarsson (2011)
propose using the conventional OLS t-statistic from (16) but scaled
by a constant to re�ect the in�ation of the standard errors as the
prediction horizon increases. Both approaches are valid only for
strongly persistent predictors.

▶ Tests for multiple-horizon predictability designed to be asymptotically
valid regardless of whether the predictors are strongly or weakly
persistent and for handling the issues arising from temporal
aggregation are proposed in Phillips and Lee (2013) who develop
tests from a reversed predictive regression framework, estimated by
IVX.

▶ Other more recent approaches are considered in Xu (2020) and
Demetrescu et al. (2023b). The latter provides a review of existing
long-horizon methods in the literature.
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Some Useful Resources

▶ The con�dence belts and code for the procedures needed for running
the CY tests are available from Motohiro Yogo's website:

https://sites.google.com/site/motohiroyogo/research/asset-pricing

▶ You will develop MATLAB code in the computer class to be able to
run the IVX tests of KMS.

▶ The Welch-Goyal (2008) dataset (updated) can obtained from

https://sites.google.com/view/agoyal145/

▶ The Campbell-Yogo dataset (updated) can be obtained from

https://sites.google.com/site/motohiroyogo/research/asset-pricing
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