
BE990-8-AU - Research Methods in
Financial Econometrics

Module Lecturer (Topics RT1-RT3)

Professor Robert Taylor
Room EBS.3.17, Essex Business School

University of Essex

e-mail: robert.taylor@essex.ac.uk

Autumn Term 2024-25



Topic RT1: Recent Developments in Unit Root Testing

▶ Models with an autoregressive [AR] unit root have very
different properties than stationary AR models. It is therefore
important to test whether a unit root is present in a given
time series.

▶ We will review the most popular class of unit root tests, the
so-called Dickey-Fuller unit root tests.

▶ We will then look at extensions of the these tests, including
the semi-parametric unit root tests of Phillips-Perron and the
M unit root tests.

▶ We then consider efficient tests of the unit root hypothesis.

▶ We will also discuss important practical issues relating to trend
function determination and the initial condition of the process.

▶ Finally, we will discuss how to perform bootstrap unit root
tests (which will be followed up on in the lab session with Dr
Sam Astill later today).
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1.1 Dickey-Fuller Unit Root Tests

▶ Assume that we have T + 1 observations on a time series yt
generated by the following DGP

yt = ϕyt−1 + εt, t = 1, ..., T (1)

where the driving shocks εt ∼ IID(0, σ2), and where we
assume for now that the (observed) initial value y0 is a
random variable with finite variance.

▶ We can re-write the series as

∆yt = γyt−1 + εt, t = 1, ..., T (2)

where ∆yt := yt − yt−1 and γ := ϕ− 1.
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▶ Dickey and Fuller (1979, JASA; 1981, Econometrica) [DF]
consider tests of the following hypothesis structure

H0 : ϕ = 1 (or equally γ = 0) ⇔ yt ∼ I(1)

vs H1 : |ϕ| < 1 (or equally − 2 < γ < 0) ⇔ yt ∼ I(0).

▶ So the null hypothesis is that yt is an integrated (unit root)
process; yt = y0 +

∑t
i=1 εi. Under the alternative the process

is stationary [I(0)].
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DF recommend using OLS to estimate (2), regressing ∆yt on yt−1

for t = 1, ..., T . They then propose testing H0 versus H1 using a
one-sided regression t-statistic for the significance of the regressor
yt−1 in (2)

tDF := γ̂/s.e.(γ̂)

where

γ̂ :=

T∑
t=1

∆yt.yt−1/

T∑
1

y2t−1, s.e.(γ̂) :=

(
σ̂2/

T∑
1

y2t−1

)1/2

and where

σ̂2 :=

T∑
1

(∆yt − γ̂yt−1)
2 /(T − 1).
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Notice that the formulae given on the last page can be obtained
using the standard matrix formulae

γ̂ = (X ′X)−1X ′Y

and
s.e.(γ̂) = (σ̂2(X ′X)−1)1/2

with
σ̂2 = (Y −Xγ̂)′(Y −Xγ̂)/(T − 1)

where X = (y0, y1, ...., yT−1)′ and Y = (∆y1,∆y2, ...,∆yT )
′.
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In order to establish the limiting null distribution of tDF we need
to use the functional central limit theorem [FCLT] (see, for
example, Hamilton’s, 1994 textbook) which states that under H0

(noting that T−1/2y0
p→ 0)

(Tσ2)−1/2y⌊Tr⌋ ≡ (Tσ2)−1/2

⌊Tr⌋∑
j=1

εj
w→ B(r), r ∈ [0, 1]

where ⌊·⌋ denotes integer part, ‘
w→’ denotes weak convergence as

T → ∞, and B(r) is a standard Brownian motion on [0, 1],
B(0) = 0.
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From this basic building block it can be established, noting that σ̂2

is a consistent estimator of σ2, that (again, see Hamilton, 1994)

tDF
w→ 0.5(B(1)2 − 1)

(
∫ 1
0 B(r)2dr)1/2

≡
∫ 1
0 B(r)dB(r)

(
∫ 1
0 B(r)2dr)1/2

.

This limiting distribution is not the standard Normal [N(0, 1)]. So,
a crucial property of tDF is that it does not have a N(0, 1) limiting
distribution under the unit root null hypothesis. Consequently,
comparing the outcome of this statistic with critical values from
the usual regression tT−1 tables for the Student t-distribution will
not deliver tests with the anticipated size (probability of rejection
under the null hypothesis).
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▶ The large sample critical values for tDF are in fact given by
1% 2.5% 5% 10%

tDF -2.58 -2.23 -1.95 -1.62
N(0, 1) -2.33 -1.96 -1.65 -1.28

▶ So, we can reject the unit root null hypothesis, H0, in favour
of stationarity at, for example the 5% level if tDF < −1.95.

▶ Note that using the standard normal critical value of −1.65
would yield a test with size closer to 10%.
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1.2 Allowing for a Non-Zero Mean

▶ Suppose we consider a more sophisticated model which allow
for a non-zero, possibly trending, mean for the series

yt = dt + ut, t = 0, ..., T (3)

ut = ϕut−1 + εt

where dt is purely deterministic and E(u20) <∞.

▶ For example, dt = α yields a series with constant mean α,
while dt = α+ βt yields a series whose mean follows a linear
trend.

▶ The mean of the series is dt regardless of whether there is a
unit root (ϕ = 1) or not (|ϕ| < 1).
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▶ We may still test H0 : ϕ = 1 versus H1 : |ϕ| < 1, but we must
include appropriate deterministic regression variables in the
regression we estimate.

▶ To that end, observe that for the special case of dt = α+ βt,
(3) can be re-written as

∆yt = γyt−1 + α∗ + β∗t+ εt, t = 1, ..., T, (4)

where

γ := ϕ− 1

α∗ := ϕ(β − α) + α

β∗ := β(1− ϕ).
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▶ To allow for a linear trend in the data, DF estimate (4) by
OLS [regress ∆yt on yt−1, a constant and a time trend - so
the regressors at time t are (yt−1, 1, t)

′] and calculate the
regression t-statistic for the significance of γ in (4). Denote
this statistic by tτDF = γ̂/s.e.(γ̂).

▶ We can obtain precise formulae for γ̂ and s.e.(γ̂) using the
matrix formulae given previously with Y as given before, but
with

X =


y0 1 1
y1 1 2
...

...
...

yT−1 1 T
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By the Frisch-Waugh theorem, this statistic is the same as that
from a regression of ∆yt on ŷt−1 where ŷt−1 is the residual from
the OLS regression of yt−1 onto a constant and linear trend over
t = 1, ..., T . This is also approximately equivalent to calculating
the DF statistic from a regression of ∆ȳt onto ȳt−1 where ȳt is the
residual from a regression of yt onto a constant and trend for
t = 0, ..., T .
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▶ Where only a constant is needed omit the linear trend from
the above regression and now call the t-statistic tµDF . This is
the same as the t-statistic from the regression of ∆yt on ỹt−1

where ỹt−1 is the residual from the OLS regression of yt−1 on
a constant over t = 1, ..., T .

▶ Matrix formulae can again be used, where X now contains
only the first two columns of the form for X given in the
linear trend case above.

▶ Again, this is approximately the same as calculating the DF
statistic from a regression of ∆y̆t onto y̆t−1 where y̆t is the
residual from a regression of yt onto a constant for
t = 0, ..., T .
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▶ The limiting null distribution of tµDF is given by

tµDF
w→ 0.5(B̃(1)2 − B̃(0)2 − 1)

(
∫ 1
0 B̃(r)2dr)1/2

≡
∫ 1
0 B̃(r)dB(r)

(
∫ 1
0 B̃(r)2dr)1/2

where B̃(r) := B(r)−
∫ 1
0 B(s)ds is a de-meaned standard

Brownian motion.

▶ The limiting null distribution of tτDF is given by

tτDF
w→ 0.5(B̂(1)2 − B̂(0)2 − 1)

(
∫ 1
0 B̂(r)2dr)1/2

≡
∫ 1
0 B̂(r)dB(r)

(
∫ 1
0 B̂(r)2dr)1/2

where B̂(r) := B̃(r)− 12
(
r − 1

2

) ∫ 1
0

(
s− 1

2

)
B̃(s)ds is a

de-trended standard Brownian motion.

▶ Again neither of these distributions are standard normal and
they differ from each other and from the distribution given
previously for tDF .
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▶ The critical values from the limiting null distributions of tµDF

and tτDF are therefore different from each other and from
those of tDF given above:

1% 2.5% 5% 10%

tµDF -3.43 -3.12 -2.86 -2.57
tτDF -3.96 -3.66 -3.41 -3.12

▶ Notice that the critical values of tDF are shifted to the left
(become more negative for a given significance level) relative
to the standard normal, and that there is a further left shift in
tµDF and again in tτDF . E.g. using the 1% critical value for
N(0, 1) [-2.33] for tµDF would actually give a test with size
above 10%.
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▶ Why is it important to allow for non-zero means where they
occur?

▶ Suppose again that we have the time-series

yt = α+ βt+ ut

ut = ϕut−1 + εt, εt ∼ IID(0, σ2)

with initial condition u0.

▶ Suppose then that we calculate tDF . In doing so we are
implicitly assuming that α = β = 0. But what if this is not
true?

▶ If β ̸= 0, it can be shown that tDF
w→ N(0, 1) when ϕ = 1, so

it does now have a standard normal limiting null distribution.

▶ However, if |ϕ| < 1 (the process is I(0)) then tDF
p→ 0 if

β ̸= 0.
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▶ So what? Ideally, of course, we wish a test to be consistent,
so that if the alternative is true, the probability that the test
rejects the null hypothesis tends to one as the sample size
diverges.

▶ Recall that we reject the null if tDF < 1.95, e.g. for a 5%
test. However, if tDF

p→ 0, then Pr(tDF < −1.95) in fact
converges to zero. Consequently, the test never rejects the
unit root null when β ̸= 0, even though the process is I(0).

▶ So, while it is neat that when β ̸= 0 we get a standard normal
limiting null distribution for tDF [this is also true of tµDF ] the
result is of little use because under H1 tDF will never be able
to reject the (false) unit root null and we would wrongly be
led to taking first differences when not needed [same holds for
tµDF ].
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▶ If β = 0, then tµDF has the asymptotic critical values we gave
before and, when |ϕ| < 1 it is such that tµDF→−∞ as
T → ∞, and, hence, Pr(tµDF < −2.86) → 1 as T → ∞.

▶ Consequently, the behaviour of tµDF depends on whether
β = 0 or β ̸= 0. This related to statistical concepts of
similarity and invariance.

▶ A (asymptotically) similar test is one whose (asymptotic) null
distribution does not depend on nuisance parameters.

▶ An (asymptotically) invariant test is one whose null and
alternative (asymptotic) distributions do not depend on
nuisance parameters.
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▶ Here is a summary of similarity/invariance properties for the
ADF tests (note the results in this table hold for arbitrary u0):

u0 α β

tDF AS,NI NS, NI NS, NI
tµDF S,NI S,I NS,NI
tτDF S,NI S,I S,I

where: S=similar; I=invariant; NS = not similar; NI = not
invariant, and AS = asymptotically similar.

▶ So, should we always use tτDF ? Yes, provided all we care
about is getting a test which is invariant to β.

▶ However, for a given value of ϕ under H1 the power (the
probability of rejecting the null when the alternative is true,
for a given significance level) of tτDF is significantly lower than
for tµDF , which in turn is much lower than that for tDF . So if
β = 0, by using tτDF we would be needlessly ‘throwing power
away’.
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▶ This is a serious problem! If the data contain a trend (β ̸= 0)
then not using tτDF is disastrous, because we know that power
will approach zero. However, if there is no trend in the data
(β = 0) then we lose a large amount of power in using tτDF

rather than tµDF .

▶ A conservative strategy is to always use tτDF .

▶ Other strategies are available ...

Strategy (a): we might pre-test the data for the presence or
otherwise of a linear trend by running the regression

yt = α+ βt+ errort

and testing H0 : β = 0 against H1 : β ̸= 0 using a standard
regression t-test.

▶ This approach is, however, problematic and the behaviour of
the t-test depends on whether yt is I(1) or I(0). This is an
example of the so-called spurious regression problem, which
we now explore.
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Example: Spurious De-trending

▶ Suppose the true model is a random walk

yt = yt−1 + εt, εt ∼ I(0)

and we decide to de-trend the data by regressing yt on an
intercept and trend and taking the residuals from that
regression.

▶ What happens?

▶ This is an example of the spurious regression phenomenon:
there is no trend in the data - it’s mean zero, but in the
regression

yt = α+ βt+ errort
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(i) The OLS estimate of β converges to zero (the true value of
β), but the estimate of α diverges.

(ii) The t-statistic for β = 0 does not have a t-distribution. In
fact it diverges as the sample size increases - bad!

▶ So, under strategy (a), we would use tτDF if the trend test is
significant, and use tµDF if it is not. Notice then that if yt is
I(1) then we will basically always be using tτDF . If yt is I(0)
then the efficacy of the procedure will come down to the
power of trend test. If it doesn’t have good power in small
samples then there would be a higher chance that we used
tµDF even though β was non-zero - this would be disastrous!

▶ Could use trend tests that are robust to whether yt is I(0) or
I(1). Examples include Perron and Yabu (2009) and Harvey,
Leybourne and Taylor (2007). Rather complicated though!
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▶ Strategy (b): Union of Rejections approach. Calculate tµDF

and tτDF and reject the unit root null hypothesis if either tµDF

or tτDF is significant at a chosen significance level.

▶ Strategy (b), although very simple, works very well in practice
and seems to be the best compromise. See

Harvey, D.I., Leybourne, S.J. and Taylor, A.M.R. (2009).
Unit root testing in practice: Dealing with uncertainty over
the trend and initial condition. Econometric Theory 14,
587-636.

for further details.
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1.3 Allowing for Serially Correlated Shocks

▶ Thus far we have conducted unit root tests in the context of
the first-order autoregressive [AR(1)] process in (1) or (3).
This is very restrictive as simple AR(1) processes do not seem
in practice to model all of the serial correlation in economic
series.

▶ To generalise, consider first the case where the shocks follow
an AR(p), 0 ≤ p <∞, process (so that yt is an AR(p+ 1)
process):

yt = ϕyt−1 + ut, t = 1, ..., T (5)

ut =

p∑
i=1

ϕiut−i + εt

with εt ∼ IID(0, σ2) and where ut is a stationary AR(p). For
the present assume that p is known.
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▶ Equation (5) can be re-written as

∆yt = γyt−1 +

p∑
i=1

γi∆yt−i + εt, t = p+ 1, ..., T. (6)

▶ DF show that γ = 0 yields a unit root [or I(1)] process, while
−2 < γ < 0 yields an I(0) series.

▶ So to test H0 : ϕ = 1 against H1 : |ϕ| < 1, now estimate (6)
by OLS and calculate the t-statistic for the significance of γ in
(6). This is the augmented Dickey-Fuller, or ADF, statistic.

▶ The critical values for this test, at least in large samples, are
the same as for the case of p = 0 which we tabulated before.
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▶ Deterministic variables, such as a constant and linear trend,
are dealt with as before - e.g. we either include a constant or
a constant and linear trend when estimating (6).

▶ Alternatively, again as before, we could equally run regressions
using the projection residuals from regressing each of the
regressors from (6) individually on a constant or a constant
and linear trend, or we could run the regressions using the
de-trended (or de-meaned data).
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▶ So far we have assumed that the data follow a finite-order
autoregression whose order is known. How do we proceed if
these assumptions are not justified?

▶ Case 1: The series follows an AR(p+ 1), 0 ≤ p <∞, but p is
unknown:

STEP 1: Run the (OLS) regression

∆yt = γyt−1 +

p∗∑
i=1

γi∆yt−i + εt, (7)

over t = p∗ + 1, ..., T , where p∗ ≥ p. Choose p∗ “large”.

STEP 2: Estimate (7) by OLS and test the null hypothesis
H0,p∗ : γp∗ = 0 against H1,p∗ : γp∗ ̸= 0. If we reject H0,p∗

then perform the ADF unit root test on γ in (7). If we accept
H0,p∗ , go to step three.

28 / 74



STEP 3: Estimate the regression

∆yt = γyt−1 +

p∗−1∑
i=1

γi∆yt−i + εt,

over t = p∗ + 1, ..., T . Repeat step 2 above for γp∗−1.

▶ Continue this procedure until you find a maximum lag length,
k∗ say, that is significant. Then using that regression perform
the ADF test. Proposed in Hall (1994, JBES).

▶ The large sample critical values for the resulting ADF test are
as for the p = 0 case.

▶ Deterministic variables can be handled as before, including
these regressors in the test regression used in each step.
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▶ Case 2: The shocks, ut, follow a general linear process:

Here the time-series model for yt is

∆yt = γyt−1 + ut (8)

ut = ψ(L)εt (9)

where εt ∼ IID(0, σ2) and where ψ(L) :=
∑∞

j=0 ψjL
j ,

ψ0 ≡ 1, with L the lag operator such that Lkyt := yt−k,
k = 0, 1, 2, ...., with the following conditions holding on ψ(z):

∞∑
j=0

j|ψj | < ∞ (10)

ψ(z) ̸= 0 ∀|z| ≤ 1. (11)

▶ Equation (9) specifies an MA(∞) for ut. This is often called
a linear process.
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▶ The condition in (10) implies that ut is stationary, and (11)
that it is invertible. All standard stationary and invertible
ARMA processes are therefore covered under the linear
process structure.

▶ Under these conditions we can re-write (8)-(9) as

∆yt = γyt−1 +

∞∑
i=1

diut−i + εt. (12)

▶ We then make use of the truncated, or sieve, autoregression,

∆yt = γyt−1 +

kT∑
i=1

d∗i∆yt−i + errort (13)

where kT is a function of the sample size, T . We need to
choose kT such that kT → ∞ as T → ∞ but (kT )

3/T → 0 as
T → ∞.
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▶ This sieve-based approach was originally proposed in the
context of the ADF tests by Säıd and Dickey (1984,
Biometrika). They assumed further that ϵt ∼ NIID(0, σ2).

▶ Säıd and Dickey show that under the rate conditions on kT
stated above, the ADF regression t-statistic from (13) again
has the usual p = 0 DF limiting null distribution (Section 1.1).

▶ But we can go further ...
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▶ Using kT as the maximum lag length, we can apply the Hall
(1994) procedure we used in Case 1 above (setting p∗ = kT ).

▶ This procedure is due to Ng and Perron (1995, JASA). This
again retains the usual p = 0 DF asymptotic critical values.

▶ Deterministic variables handled as before.

▶ Full technical details can be found in Chang and Park (2002,
Econometric Reviews) who generalise the theory in Säıd and
Dickey (1984) to allow ut to follow a more general (not
necessarily Gaussian) linear process driven by conditionally
heteroskedastic innovations (interestingly, the limiting null
distribution of the ADF statistic does not depend on any
nuisance parameters arising from the conditional
heteroskedasticity).
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1.4 Other Ways to Select the Lag Truncation, k∗:
Information Criteria

1. Again select a maximum order, kT , satisfying the rate
conditions stated above.

2. Estimate the set of regressions

∆yt = γyt−1 +

k∑
i=1

γi∆yt−i + errort (14)

for each of k = 0, 1, ..., kT , in each case over the sample data
t = kT + 1, ..., T , including deterministic regressors if needed.

3. Calculate the maximum likelihood estimate of the error
variance in each case: σ̂2k := T−1

∑
û2t,k, where ût,k are the

residuals from estimating (14) for k, k = 0, ..., kT .
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▶ Two famous information criteria are the Akaike and
Schwart-Bayes information criteria, AIC and BIC respectively:

AIC := min
k=0,...,kT

{
log σ̂2k + 2k/T

}
BIC := min

k=0,...,kT

{
log σ̂2k + k(log T )/T

}
▶ Neither criterion seems to work especially well in practice in

controlling the nominal finite sample size of the ADF test
when the process contains MA behaviour. See Ng and Perron
(2001, Econometrica) [NP] for extensive simulations and also
the discussion in Haldrup and Jansson (2006).

▶ AIC also does not consistently estimate the true lag length in
a pure AR case.
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▶ Both AIC and BIC were originally designed for stationary time
series models and so, as NP point out, this limits their use in
the ADF regression context where the regressor yt−1 is
non-stationary under the unit root null.

▶ Consequently, NP propose a new information criterion which
accounts for the fact that yt−1 is a non-stationary regressor
under the null. Their MAIC criterion is given by

MAIC := min
k=0,...,kT

{
log σ̃2k + 2(τ(k) + k)/(T − kT )

}
where:

σ̃2k := (T − kT )
−1

T∑
t=kT+1

û2t,k, τ(k) := (σ̃2k)
−1γ̂(k)2

T∑
kT+1

y2t−1

and γ̂(k) is the OLS estimator of γ from (14).
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1.5 Semi-Parametric Unit Root Tests

▶ An alternative to the parametric correction outlined above
(the so-called ADF tests, where we include lags of ∆yt in the
test regression), is considered in Phillips (1987, Econometrica)
and Phillips and Perron (1988, Biometrika) [PP] using
non-parametric methods to account for any serial correlation
present in the shocks.

▶ Condition (11) may be dropped, except at z = 1.

▶ Phillips (1987) showed that if the data are generated as in
(8)-(9) and we use the standard unaugmented DF test, tDF

(with no lagged dependent variables included) of γ = 0 from
the regression

∆yt = γyt−1 + errort

that the limiting null distribution of tDF depends on two
nuisance parameters:
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(i) the “short-run” variance of ut,

σ2u := E(u2t ) = σ2

 ∞∑
j=0

ψ2
j


(ii) the “long-run variance of ut”,

ω2 := lim
T→∞

T−1E

( T∑
t=1

ut

)2
 = σ2

 ∞∑
j=0

ψj

2

= σ2ψ(1)2.
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▶ For any stationary process, the long run variance can also be
written as

ω2 := σ2u + 2

∞∑
j=1

E(ut ut−j).

Example: Consider the MA(1) process

ut = εt + θεt−1, εt ∼ IID(0, σ2).

▶ In this case the short-run variance of ut is given by

σ2u = σ2(1 + θ2).

▶ The process is stationary and so its long-run variance is given
by

ω2 = σ2u + 2E(ut ut−1)

= σ2 + θ2σ2 + 2θσ2

= σ2(1 + θ)2, (= σ2ψ(1)2).
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▶ PP use non-parametric estimators of the nuisance parameters
σ2u and ω2 to modify the unaugmented DF statistic, tDF ,
such that it has the usual (pivotal) limiting null distribution
given before for the AR(1) case. They propose the statistic

Zt =

(
σ̂2u
ω̂2

)1/2

tDF − ω̂2 − σ̂2u

2
(
ω̂2T−2

∑T
t=1 y

2
t−1

)1/2
where ω̂2 and σ̂2u are consistent estimators of ω2 and σ2u
respectively.
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▶ These estimators are given by

σ̂2u := T−1
T∑
t=1

û2t

= T−1
T∑
t=1

(
yt − ϕ̂yt−1

)2
where ϕ̂ is the OLS estimator from regressing yt on yt−1, and

ω̂2 := σ̂2u + 2

mT∑
j=1

w(j)

T−1
T∑

t=j+1

ûtût−j


where w(·) is a kernel function and mT + 1 is the bandwidth.
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▶ The choice of mT is rather like the choice of lag length in the
ADF regression. The bandwidth needs to satisfy the condition
that mT → ∞ as T → ∞ such that (mT )

4/T → 0 as
T → ∞.

▶ What of the choice of kernel function? See the discussion in
Haldrup and Jansson (2006,p.258), but a simple and popular
choice is the Bartlett kernel: w(j) := 1− (j/(mT + 1)).

▶ Deterministic variables can again be handled by substituting
tDF by either tµDF or tτDF in the expression for Zt and by

calculating ϕ̂ and the residuals {ût} from the regression of
either ȳt on ȳt−1 or y̆t on y̆t−1. These statistics will then have
the the limiting null distributions given previously for the pure
AR(1) case.
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▶ An alternative estimator of ω̂2 which was originally proposed
by Berk (1974, Ann. Stats) and recently popularised by NP is
calculated as follows.

▶ First estimate the ADF regression (possibly with deterministic
regressors)

∆yt = γ̂yt−1 +

p∑
j=1

γ̂j∆yt−j + errort (15)

where the lag truncation p could be chosen as outlined
previously.

▶ Then calculate the autoregressive spectral density estimator of
ω2:

ω̂2
AR(p) :=

σ̂2p(
1−

∑p
j=1 γ̂j

)2
where σ̂2p and {γ̂j}pj=1 are respectively the OLS variance and
slope estimators from (15). NB Assumes ut in (9) satisfies
(10) and (11).
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1.6 The M Class of Unit Root Tests

▶ Originally proposed in Stock (1999, A Festschrift in Honour of
Clive W.J. Granger, OUP) but popularised by NP the trinity
of M tests take the form

MZα :=
T−1y2T − ω̂2

AR(p)

2T−2
∑T

t=1 y
2
t−1

MSB :=

(
T−2

T∑
t=1

y2t−1/ω̂
2
AR(p)

)1/2

MZt := MZα ×MSB

where ω̂2
AR(p) is the autoregressive spectral density estimator

we just considered.

▶ The associated M tests reject H0 for large negative values of
MZα and MZt, and for small (close to zero) values of MSB.
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▶ NP suggest using the MAIC criterion to select the lag
truncation, p.

▶ The limiting null distributions of these statistics are given in
NP. For example, MZt has the usual Dickey-Fuller distribution
(and hence critical values), as given for tDF before.

▶ To allow for deterministic regressors, simply construct the M
tests as above but replacing yt throughout (including in the
ADF regression for constructing ω̂2

AR(p)) by ȳ
d
t , the residuals

from the OLS regression of yt on dt, t = 0, ..., T . Also, in the
numerator of the expression for MZα add the term −T−1ȳd0 .
This ensures that, for example, the statistic MZt has the
same limiting null distribution as tµDF when dt = α and as
tτDF when dt = α+ βt.
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1.7 Efficient (and Near-Efficient) Unit Root Tests

▶ The ADF test has no optimality properties, even in large
samples - it is an example of what is called an ad-hoc test.
We now turn to developing optimal unit root tests.

▶ Following Elliott, Rothenberg and Stock (1996,
Econometrica) [ERS], consider the model

yt = dt + ut, t = 1, ..., T

ut = ϕut−1 + vt

where dt = β′zt is a purely deterministic process, and vt is an
I(0) process. Again we focus on testing the unit root null
H0 : ϕ = 1 against the I(0) alternative H1 : |ϕ| < 1.
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▶ Case 1: Let {vt} be generated according to the linear process

vt =

∞∑
j=0

δjηt−j , ηt ∼ NIID(0, 1)

with
∑∞

j=0 j|δj | <∞ (one summability), u0 = 0 and the MA
lag parameters {δj}∞j=0 all known.

▶ These conditions are, obviously, totally unrealistic but they
allow us to obtain a theoretically optimal test, using the ...

▶ Neyman-Pearson Lemma, which states that a most powerful
[MP] test of H0 versus H1 is obtained by rejecting for large
values of the likelihood ratio, L∗

1/L
∗
0, where L

∗
j is the

likelihood under Hj , j = 0, 1. Equivalently we can base the
test on log-likelihoods using ℓ(1)− ℓ(0), where
ℓ(j) := log(L∗

j ), j = 0, 1.
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▶ Now in this case we assume first that dt = 0 [or that dt is
known]. Then we obtain that -2 times the log likelihood
(ignoring the additive constant) is given by

L(ϕ) = [∆u− (ϕ− 1)u−1]
′Σ−1 [∆u− (ϕ− 1)u−1]

where ∆u := (u1, u2 − u1, ...., uT − uT−1)
′ and

u−1 := (u0, u1, ..., uT−1)
′ = (0, u1, ..., uT−1)

′, and Σ is the
(known) covariance matrix of v := (v1, v2, ..., vT )

′.

▶ So, using the N-P Lemma, a MP test of H0 : ϕ = 1 versus
H1 : ϕ = ϕ̄ rejects for small values (recall the -2 factor taken
out of the log likelihoods above) of the statistic L(ϕ̄)− L(1).

▶ To distinguish between the power properties of tests,
consistency is too blunt an instrument since any sensible test
should have power = 1 under the alternative in large samples.
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▶ Instead we usually compare tests according to their power
against local alternatives (known also as local drift or Pitman
drift); i.e. power against H1,c : ϕ = 1 + c̄/T = ϕ̄, or equally
c̄ = T (ϕ̄− 1), where c̄ ≤ 0.

▶ So, by the N-P lemma, for such a local alternative the optimal
(MP) test will reject for small values of
Sc̄ := L(1 + c̄/T )− L(1).

▶ ERS demonstrate that under H1,c : ϕ = 1 + c/T ,

Sc̄
w→ c̄2

∫ 1

0
Wc(r)

2 − c̄[Wc(1)
2 − 1]

where Wc(r) :=
∫ s
0 exp (−c (s− r)) dB (r), B(s) a standard

Brownian motion. This is known as a standard
Ornstein–Uhlenbeck [OU] process with mean reversion
parameter c. Notice that W0(r) = B(r). Observe that c̄ is the
value of the drift that we test against and c is the true drift.
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▶ Setting c = 0 gives the limiting null distribution of the LR
test, while setting c = c̄ gives the optimal test against c̄.
From this we can obtain the power envelope for a given
nominal significance level by ‘joining up’ all such tests: viz,
π(c) := π(c, c), where

π(c, c̄) := Pr
[
c̄2
∫ 1
0 Wc(r)

2 − c̄[Wc(1)
2 − 1] < cvξ

]
, where

cvξ denotes the critical value of the test for a significance level
ξ%.

▶ Unlike in classical testing problems, the N-P lemma does not
yield a uniformly most powerful [UMP] test in the unit root
testing problem. Each test, Sc̄ is only MP against c̄.

▶ Now we move onto the case where it is not assumed that
dt = 0.

50 / 74



▶ Case 2: Let {vt} be generated as in Case 1, but now we no
longer assume that dt = 0.

▶ This situation is more complicated than Case 1, and we need
to use what are called maximal invariants. Let’s make some
notation first. Let ya := (y1, y2 − ay1, ..., yT − ayT−1)

′ and
let Za := (z1, z2 − az1, ..., zT − azT−1)

′.

▶ Now (-2 times) the log-likelihood (again ignoring the additive
constant) is given by

L(ϕ,β) = (yϕ − zϕβ)
′Σ−1(yϕ − zϕβ)

and ERS show that a most powerful invariant [MPI] (where
the invariance is w.r.t. β) rejects for small values of the
statistic

L∗
T := min

β
L(ϕ̄,β)−min

β
L(1,β).
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▶ For the case where dt = α (an unknown constant), ERS
demonstrate that L∗

T
w→ c̄2

∫ 1
0 Wc(r)

2 − c̄[Wc(1)
2 − 1], just as

Sc̄ did under Case 1.

▶ For the case where dt = α+ βt,
L∗
T

w→ c̄+ c̄2
∫ 1
0 Vc(s, c̄)

2ds+ (1− c̄)Vc(1, c̄)
2, where

Vc(s, c̄) :=Wc(s)− s
[
λWc(1) + 3(1− λ)

∫ 1
0 rWc(r)dr

]
and

λ := (1− c̄)(1− c̄+ c̄2/3)−1.

▶ The representations for the power function of L∗
T in both

cases then follow immediately using these limits, as before.

▶ Regardless of the form of dt, no uniformly most powerful
invariant test exists. Power functions depend on the
deterministic elements in zt and differ, in general, from Case 1
(the constant case being an exception).
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▶ Thus far we have made some heroic assumptions: (i) u0 = 0
and Σ is known; (ii) the process is Gaussian. ERS
subsequently weaken these conditions to: (i) u0 has a finite

variance, which implies that T−1/2u0
p→ 0, and vt is as given

before but it is no longer assumed that the {δj} parameters
are known. We now denote the long run variance of vt as ω

2
v .

Assumption (ii) can be dropped in favour of ηt ∼ IID(0, 1).

▶ Now consider the test which rejects for small values of the
statistic

PT :=
[
S(ϕ̄)− ϕ̄S(1)

]
/ω̂2

v

where S(a) := (ya − zaβ)
′(ya − zaβ) and ω̂

2
v is any

consistent estimator for ω2
v .

▶ ERS show that this test has the same asymptotic (but not
exact) power functions as the MP(I) tests detailed previously.
This is a powerful (!) result.
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▶ Case 3: Now suppose we want practical tests, recognising the
fact that we do not know the true value of ϕ (i.e. of c).

▶ ERS suggest a modified version of PT , denoted PT (π), which
is run for a value of c̄ (and, hence, ϕ̄) such that for a test run
at the ξ % significance level the test has 50% power against
c = c̄. They show that such tests have asymptotic local power
which lies very close to the asymptotic Gaussian local power
envelope.

▶ ERS show that the appropriate choices for 50% power on 5%
significance level tests are: c̄ = −7 for the constant case; and
c̄ = −13.5 for the linear trend case.
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▶ The most widely used tests proposed in ERS are their
local-GLS de-trended ADF tests. These are constructed as
follows. Notice that this procedure only differs from the
standard ADF tests where de-trending is employed
(deterministic variables are included).

▶ STEP 1: Regress (OLS) yϕ̄ (where ϕ̄ is the value defined just
above, corresponding to c̄) on Zϕ̄ to obtain the local GLS

de-trended data ydt := yt − β̂
′
Zt, where β̂ denotes the OLS

estimator from this regression.

▶ STEP 2: Run the ADF-type regression

∆ydt = a0y
d
t−1 +

p∑
j=1

aj∆y
d
t−j + errort (16)

and calculate an ADF-type test for a0 = 0.
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▶ ERS show that for dt = α the resulting test, tGLS,µ
DF say, has

the same local power function as tDF ; they show that this is
given by,

tDF , t
GLS,µ
DF

w→
0.5
(
Wc(1)

2 − 1
)(∫ 1

0 Wc(s)2ds
)1/2

while for the linear trend case, dt = α+ βt, the GLS-type
test, tGLS,µ

DF say, satisfies

tGLS,τ
DF

w→
0.5
(
Vc(1, c̄)

2 − 1
)(∫ 1

0 Vc(s, c̄)
2ds
)1/2 .

▶ Critical values for tGLS,µ
DF and tGLS,τ

DF are given in ERS on
p.825. For the constant case, these are obviously the same as
for tDF .

56 / 74



▶ The choice of the lag truncation p in (16) can be made as
outlined before.

▶ ERS show that these local GLS de-trended ADF-type tests lie
arbitrarily close to the asymptotic Gaussian local power
envelope.

▶ The PP tests and M tests that we discussed before can also
be constructed using local GLS de-trended data. Let’s use the
M tests to illustrate.

▶ The M tests are formed as at the start of Section 1.6 except
that the statistics are constructed using {ydt } rather than {yt}.
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▶ The autoregressive spectral density estimator can also be
formed using the analogue of (15) based on {ydt }, although
Perron and Qu (2007, Economics Letters) show that superior
finite sample power is obtained against fixed alternatives when
constructing the autoregressive spectral density estimator
using (15) augmented with the relevant deterministic
regressors (there is no change to the asymptotic local power
properties).

▶ The limiting distributions of the M tests based on local GLS
de-trending are provided in NP, along with critical values. The
MZt type test, for example, has the same limit distribution
(and, hence, asymptotic local power function) as that for
tGLS,µ
DF in the constant case, and tGLS,τ

DF in the linear trend
case.
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▶ NP show that the local GLS de-trended M tests all lie
arbitrarily close to the asymptotic Gaussian local power
envelope in both the constant and linear trend environments.

▶ NP show that the M tests using the autoregressive spectral
density estimator of the long-run variance, coupled with local
GLS de-trending show the best size and power of available
unit root tests. See also, in particular, the detailed discussion
in Haldrup and Jansson (2006), who also discuss the form of
the limiting local power envelope for non-Gaussian cases.
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1.8 The Impact of the Initial Condition on Unit Root
Testing

▶ Thus far we have made quite strong assumptions on the initial
condition, defined as the deviation of the first observation
from its deterministic component, of the process. Throughout
we have made assumptions which imply that T−1/2y0 (or
T−1/2u0, depending on the precise model) converges in
probability to zero. The scale factor T−1/2 is crucial because,
as is clear from the FCLT in Section 1.1, this implies that the
initial condition will be asymptotically irrelevant under such
an assumption. That is, the initial condition is assumed to be
of smaller order in probability than the rest of the data.

▶ While this is convenient, since it implies that the limiting null
distribution and asymptotic local power functions of the unit
root tests do not depend on the initialisation, it is nonetheless
unlikely to be true in reality.
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▶ As discussed in Elliott and Müller (2006, Jnl. Econometrics),
while there may be situations in which one would not
necessarily expect the initial condition to be unusually large
or, indeed, unusually small, relative to the other data points,
equally the initial condition might be relatively large in other
situations. The former case occurs, for example, where the
first observation in the sample is dated quite some time after
the inception of a mean-reverting process, while the latter
could perhaps happen if the sample data happen to be chosen
to start after a break (perceived or otherwise) in the series, or
where the beginning of the sample coincides with the start of
the process. This latter example can also allow for the case
where an unusually small (even zero) initial condition occurs.
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▶ In practice it is therefore hard to rule out small or large initial
conditions, a priori. This is problematic because the
magnitude of the initial condition can have a substantial
impact on the power properties of unit root tests in practice
(see, inter alia, Müller and Elliott, 2003, Econometrica) and,
as discussed in and Elliott and Müller (2006), we observe only
the initial observation rather than the initial condition.

▶ Müller and Elliott (2003) find that although the local-GLS
de-trended ADF tests of ERS (Section 1.7) are considerably
more powerful than the conventional OLS-detrended ADF
tests (Section 1.2) when the initial condition is zero, the
reverse is true when the initial condition is large.

▶ More discussion on this issue can again be found in Harvey,
Leybourne and Taylor (2009, Econometric Theory) who
propose union of rejections and weighed tests, based on the
local-GLS de-trended ADF test and the OLS de-trended ADF
test, for dealing with this issues.
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1.9 Bootstrap Unit Root Tests

▶ As we have saw in Section 1.3, so called sieve methods have
been proposed in the context of the ADF tests.

▶ Recall that we obtain the ADF t-ratio from the ADF
regression (dt is the deterministic term):

∆yt = dt + γyt−1 +

kT∑
i=1

d∗i∆yt−i + errort (17)

where kT → ∞ as T → ∞ with (kT )
3/T → 0 as T → ∞.

▶ The ADF limiting null distribution can however be a very poor
approximation to the finite sample null distribution of the
sieve-based ADF statistic. This is therefore a case where a
bootstrap implementation might be useful to obtain unit root
tests with better finite sample properties.
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▶ Park (2003, Econometrica) for the AR(p) case and Chang
and Park (2003, JTSA) for the AR(∞) (sieve) case show how
to develop valid bootstrap implementations of the ADF tests.
Both use what is called an i.i.d. residual bootstrap approach.

▶ Aside: Given a set of sample data, say {x1, ..., xT }, the i.i.d.
bootstrap samples T points from {x1, ..., xT } with
replacement. The selected data points are chosen as random
and independent draws from a given distribution, usually
(though not necessarily) assigning equal probability to each
data point; ie draws from a uniform distribution over
{1, ..., T}.

▶ A residual i.i.d. bootstrap applies the same resampling
principle to a set of regression residuals.

▶ The statistic of interest is then calculated from the bootstrap
sample. If this is done B times we can obtain the empirical
distribution function [EDF] of the bootstrap statistic.
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Chang and Park (2003) Sieve Bootstrap ADF Test
▶ Step 1: Calculate the ADF statistic, tADF , from (17)

satisfying S&D’s rate condition on kT .

▶ Step 2: Imposing H0, define et = ∆yt. Then estimate (OLS
or YW) the sieve regression, et = dt +

∑kT
j=1 ϕjet−j + ukT ,t,

to obtain the restricted estimates ϕ̃j , j = 1, ..., kT , and the
residuals, ũt.

▶ Step 3: i.i.d. resample from the (centred) residuals, ũt − ũ, to
get bootstrap residuals, u∗t .

▶ Step 4: Recursively generate e∗t =
∑kT

j=1 ϕ̃je
∗
t−j + u∗t , setting

pre-sample values to eg zero.

▶ Step 5: Impose H0 on the bootstrap DGP by cumulating the
e∗t ’s; ie y

∗
t = y∗0 +

∑t
j=1 e

∗
j , with y

∗
0 set to eg zero.

▶ Step 6: Calculate the bootstrap analogue of tADF in (17)
applied to y∗t .

▶ Step 7: Perform Steps 2-6 B times to form the estimated
bootstrap EDF. Obtain bootstrap p-value.
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get bootstrap residuals, u∗t .

▶ Step 4: Recursively generate e∗t =
∑kT

j=1 ϕ̃je
∗
t−j + u∗t , setting

pre-sample values to eg zero.

▶ Step 5: Impose H0 on the bootstrap DGP by cumulating the
e∗t ’s; ie y

∗
t = y∗0 +

∑t
j=1 e

∗
j , with y

∗
0 set to eg zero.

▶ Step 6: Calculate the bootstrap analogue of tADF in (17)
applied to y∗t .

▶ Step 7: Perform Steps 2-6 B times to form the estimated
bootstrap EDF. Obtain bootstrap p-value.

65 / 74



Chang and Park (2003) Sieve Bootstrap ADF Test
▶ Step 1: Calculate the ADF statistic, tADF , from (17)

satisfying S&D’s rate condition on kT .

▶ Step 2: Imposing H0, define et = ∆yt. Then estimate (OLS
or YW) the sieve regression, et = dt +

∑kT
j=1 ϕjet−j + ukT ,t,

to obtain the restricted estimates ϕ̃j , j = 1, ..., kT , and the
residuals, ũt.
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▶ C&P Demonstrate the asymptotic validity of their sieve
bootstrap unit root test. However, they impose that the
shocks, ut are i.i.d. Their bootstrap is still valid with
conditionally heteroskedastic errors, but won’t replicate such
effects in the bootstrap data.

▶ Their bootstrap is not, in general, valid if there is
unconditional heteroskedasticity present in ut. This is often
called non-stationary volatility. A simple example occurs
where the variance of εt in (9) displays a one-time break at
some point in the sample.

▶ Although C&P argue that their sieve bootstrap loses no power
relative to the test based on asymptotic critical values, their
own simulations show large power losses relative to the
standard ADF test under H1. This occurs because Step 2
imposes H0 on the sieve stage. Under H1, et is non-invertible,
violating the conditions for sieve validity.
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▶ Cavaliere and Taylor (2008, Econometric Theory) address
these problems proposing wild bootstrap ADF tests.

▶ Aside: With an original set of sample data, say {x1, ..., xT },
the wild bootstrap data is given by x∗t = xt × wt, where the
wt’s are a sequence of independent random variables with
mean zero and variance 1. Examples used for wt include
NIID(0, 1), and independent draws from the Rademacher
distribution, which takes either the value 1 or −1, each with
probability 0.5.

▶ Again the wild bootstrap resampling scheme can also be
applied to regression residuals.
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Cavaliere and Taylor (2008) Wild Bootstrap ADF Test

▶ Step 1: Calculate the ADF statistic, tADF , from (17), for
some lag length k.

▶ Step 2: (Optional): Estimate (17) to obtain the estimates ϕ̂j ,
j = 1, ..., k.

▶ Step 3: Wild bootstrap resample from the first differences,
et = ∆yt, to get bootstrap residuals, u∗t = et × wt.

▶ Step 4: (Optional) Recursively generate
e∗t =

∑k
j=1 ϕ̂je

∗
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▶ Because the wild bootstrap kills weak correlations, there’s no
need to perform the sieve element for asymptotic validity,
unlike with C&P’s bootstrap. But including a sieve stage can
improve finite sample size. Indeed k can be set to zero in the
bootstrap version of (17) in Step 6 if the sieve stage is
omitted.

▶ Notice that C&T do not impose H0 when performing the
(optional) sieve and, as a result, C&T’s wild bootstrap ADF
tests avoid the power losses seen with C&P’s tests.

▶ C&T show that the wild bootstrap statistic, t∗ADF say, has the
same first order limiting distribution as the limiting null
distribution of tADF under null, local and fixed alternatives.
Hence, behaves like an infeasible size-corrected ADF test.

▶ C&T in various papers (eg Econometric Theory, 2009, and
Econometric Reviews, 2009) show that the bootstrap ADF
tests perform very well in the presence of both conditional
heteroskedasticity and unconditional heteroskedasticity of
many forms (eg volatility breaks, trending volatility, IGARCH,
AR-SV, various GARCH -type models).
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