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Detecting Financial Bubbles

1. Introduction

e “How do we know when irrational exuberance has unduly
escalated asset values?” (Alan Greenspan, 1996)

e “Experience can be a powerful teacher. The rise and fall of
internet stocks, which created and then destroyed $8 trillion of
shareholder wealth, has led a new generation of economists to
acknowledge that bubbles can occur.” (Alan Krueger, 2005)
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@ During the 1990s, led by DotCom stocks and the internet sector,
the U.S. stock market experienced spectacular rises in all major
indices, especially the Nasdaq index. As a result, there was much
popular talk among economists about the effects of the internet
and computing technology on productivity and the emergence of
a “new economy” associated with these changes. What caused the
unusual surge and subsequent fall in prices, whether there were
bubbles, and whether the bubbles were rational or behavioural
have been among the most actively debated issues in
macroeconomics and finance in recent years.
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@ As discussed in Phillips, Wu and Yu (2011), many attribute the
episode to financial bubbles: examples include Greenspan (1996),
Thaler (1999), Shiller (2000), Cooper et al. (2001), Ritter and Welch
(2002), Ofek and Richardson (2002), Lamont and Thaler (2003),
and Cunado et al. (2005).

@ Greenspan’s (1996) remarks, including the phrase “irrational
exuberance” to characterise herd stock market behaviour, have
been influential in thinking about financial markets and herd
behaviour.

@ Immediately after Greenspan coined the phrase, stock markets fell
sharply worldwide although this did not halt the general upward
march of the United States market. Indeed, over the 1990s, the
Nasdaq index rose to the historical high of 5,048.62 points on
March 10, 2000 from 329.80 on October 31, 1990; see Figure 1.
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Figure 1: Real NASDAQ price and dividend series, 02/1973-06/2005
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@ In response, academic researchers have started to develop
methods to examine empirically the Nasdaq market performance
in relation to the market perceptions of exuberance by Greenspan
and others.

e To allow data testing we must first define financial exuberance in
a time series modelling context. This has been done in terms of
explosive autoregressive [AR] behaviour within short periods of
the series. Researchers have then introduced new econometric
methodology based around sub-sample implementations of the
familiar Dickey-Fuller (1979) [DF] unit root statistic to assess the
empirical evidence of exuberant behaviour in the Nasdaq stock
market index.
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@ This formulation is compatible with several different explanations
of this period of market activity, including the rational bubble
literature, herd behaviour, and exuberant and rational responses
to economic fundamentals. All these propagating mechanisms
can lead to explosive characteristics in the data. Hence, the
empirical issue becomes one of identifying the origination,
termination, and extent of the explosive behaviour. Although
with traditional test procedures “there is little evidence of
explosive behavior” (Campbell et al., 1997, p. 260), these new
procedures have found evidence of explosive periods of price
exuberance in the Nasdaq and others series.
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@ Among the potential explanations of explosive behaviour in
economic and financial variables, the most prominent are perhaps
models with rational bubbles. Accordingly, the literature has
tended to relate the analysis of explosive behaviour to the rational
bubble literature. Here it is well known that standard econometric
tests encounter difficulties in identifying rational asset bubbles
(Flood and Garber, 1980; Flood and Hodrick, 1986; Evans, 1991).

@ The use of tests based on sub-samples of the data overcomes these
difficulties enabling detection and dating of periods of
exuberance.
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@ When Greenspan coined the phrase “irrational exuberance” it was
perhaps as a warning that the market might be overvalued and at
risk of a financial bubble. The subsequent rise and fall of internet
stocks to the extent of $8 trillion of shareholder wealth renewed a
long-standing interest among economists in the possibility of
financial bubbles.

@ Theoretical studies on rational bubbles in the stock market include
Blanchard (1979), Blanchard and Watson (1982), Shiller (1984),
Tirole (1982, 1985), Evans (1989), Evans and Honkapohja (1992),
and Olivier (2000). Empirical studies include Shiller (1981), West
(1987, 1988), Campbell and Shiller (1987, 1989), Diba and
Grossman (1988), Froot and Obstfeld (1991), and Wu (1997). Flood
and Hodrick (1990) and Gurkaynak (2005) survey various
econometric methodologies and test results for financial bubbles.
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@ In the rational bubble literature, bubbles manifest explosive
characteristics in prices. This statistical property motivates a
definition of exuberance propagated by the explosive
autoregressive [AR] process

Xt = U + 4>xf,1 + &,

where, for certain subperiods of the data, ¢ > 1.

@ Rational bubbles can be illustrated using the present value theory
of finance whereby fundamental asset prices are determined by
the sum of the present discounted values of the expected future
dividend sequence.
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@ Begin with the standard no arbitrage condition,

1

P =—
"T1F+R

E¢(Pry1+ Diy1)

where P; is the real stock price (ex-dividend) at time ¢, D; is the
real dividend received from the asset for ownership between t — 1
and f, and R is the discount (or risk-free) rate (R > 0) assumed
time-invariant. E; denotes expectations taken at time .
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o Campbell and Shiller (1989) show a log-linear approximation and
recursive substitution yields

Pt:P/;‘i‘bt

where p; = log(P;). By convention, p/; , which is exclusively
determined by expected dividends, is called the fundamental
component of the stock price, and b; is called the rational bubble
component and follows a first-order explosive AR.

@ The properties of p; are therefore determined by p{ and b;. In the
absence of bubbles, i.e., by = 0, for all {, we will have p; = pﬁ ,and

so p; is determined solely by pi and, hence, by d; = log(D;). In this
case if p; and d; are both (unit root) integrated processes of order
one, denoted I(1), then they can be shown to be co-integrated with
the co-integrating vector [1, —1].
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o If a bubble is present in the stock price, i.e. by # 0, this formulation
requires that any rational investor, who is willing to buy that
stock, must expect the bubble to grow at rate R. If this is the case
and if b; is strictly positive, this sets the stage for speculative
investor behaviour: rational investors are willing to buy an
“overpriced” stock in the belief that through price increases, they
will be sufficiently compensated for the extra payment b;. If
investors expect prices to increase at rate R and buy shares, the
stock price will indeed rise and complete the loop of a
self-fulfilling prophecy.
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o If bubbles are present, i.e., b; # 0, then p; like b; will be explosive,
irrespective of whether d; is I(1), or a stationary process, denoted
1(0). Here Ap; = p; — p;—1 is also explosive and therefore cannot be
I(0). This implication motivated Diba and Grossman (1988) to look
for bubble behaviour by applying standard unit root tests to Ap;.
Finding an empirical rejection of the null of a unit root in Ap;,
Diba and Grossman (1988) concluded that p; was not explosive
and so there was no bubble in the stock market.

@ Where d; is I(1), Diba and Grossman (1988) looked for evidence of
the absence of bubbles by testing for a co-integrating relation
between p; and d;. In the presence of bubbles, p; is always
explosive and hence cannot co-move or be co-integrated with d; if
dy is itself not explosive. Therefore, an empirical finding of

co-integration between p; and d; may be taken as evidence against
bubbles.
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@ Evans (1991) questioned the validity of the empirical tests
employed by Diba and Grossman (1988) by arguing that none of
these tests have much (if any) power to detect periodically
collapsing bubbles. He demonstrated by simulation that the low
power of standard unit root and co-integration tests in this context
is due to the fact that a periodically collapsing bubble process can
behave much like an I(1) process or even like a stationary linear
autoregressive process provided that the probability of collapse of
the bubble is not negligible. As a result, Evans (1991, p. 927)
claimed that “periodically collapsing bubbles are not detectable
by using standard tests.”
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o The foregoing suggests that a direct way to test for bubbles is to
examine evidence for any explosive behaviour in p; and d;. Of
course, explosive characteristics in p; could in principle arise from
dy and the two processes would then be explosively co-integrated.
However, if d; is demonstrated to be nonexplosive, then the
explosive behaviour in p; will provide sufficient evidence for the
presence of bubbles because the observed behaviour may only
arise through the presence of b;.

o It seems likely that in practice explosive behaviour in p; may only
be temporary or short-lived, as in the case of stock market bubbles
that collapse after a certain period of time. This can be taken into
account empirically by looking at sub-samples of the data.
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@ Motivated by this, Phillips, Wu and Yu (2011, In. Econ. Rev.)
(PWY), focus on testing for explosive AR behaviour using the
largest of a set of forward recursive (these are particular
sequences of sub-samples) right-tailed DF tests applied to the
price and dividend series in levels only. If the test finds explosive
AR behaviour for the prices but not for the dividends, this
indicates that an explosive rational bubble exists.

@ PWY apply their tests to the Nasdaq Composite stock price index
and dividend index between February 1973 and June 2005; the test
detects the presence of an explosive rational bubble beginning in
mid-1995.

@ These tests have become popular in testing for speculative
bubbles in asset prices. Gilbert (2010), using commodities futures
prices (2006-2008), finds evidence of bubbles in copper, nickel and
crude oil markets.
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@ Homm and Breitung (2012) apply the PWY test and a related
Chow-type test to stock, commodity and house price data, finding
a body of evidence for bubbles.

@ Using the PWY test, Bettendorf and Chen (2013) find evidence of
explosive bubbles in the sterling-US dollar nominal exchange rate.
This appears to be driven by explosive behaviour in the relevant
price index ratio for traded goods.
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@ A number of further bubble detection procedures have been
developed since the original PWY procedure. Most notably,
Phillips, Shi and Yu (2014) (PSY) develop two further procedures
based on backward recursions through the data, and on a double
recursion. The first is designed to detect end of sample bubbles,
while the second is used to detect multiple possible bubbles in a
series, rather than a single possible bubble episode.

e Astill, Harvey, Leybourne and Taylor (2017) develop a procedure
for detecting an end of sample bubble using a sub-sampling
method introduced in Andrews (2003). They show this to display
greater power than the PSY Dickey-Fuller based tests to detect
end-of-sample explosive episodes.
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2. The Stochastic Bubble Model

e DGP:
yr=u+u, t=1,.,T 1)
U1+ &, t=1,.., LTL()TJ,
U = (1 + (51)11[71 + Et, t= I_T],OTJ + 1, ceey LTQ,OTJ,

(1=0)ur1+ey, t=[m0T]+1,.., |1oT],
Ut + &ty t= \_T3,0TJ + 1/ ey T

where 07 > 0 and 0, > 0. We assume that ¢; ~ I(0).

@ When 67 > 0, y; follows a unit root up to time | 71 ¢T |, after which
it displays explosive AR behaviour over t = |71 0T| +1,..., [ 172,07 |.
When applied to asset prices, and assuming unit root behaviour
in the corresponding dividend series, this can be interpreted as a
bubble regime.
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o At the end of the bubble period: if J, = 0, y; reverts to unit root
dynamics directly, while if , > 0, this happens after an interim
stationary regime over t = | 10T | + 1, ..., | 1307 |. The latter
provides a model of a crash regime, where the mean-reverting
stationary behaviour acts to “offset” the explosive period to some
extent.

@ The magnitude of /, and the duration of the collapse regime
provide a flexible way of controlling the rapidity and extent to
which price corrections occur when an asset price bubble
terminates.

@ The DGP also admits a bubble (or collapse) regime continuing to
the end of the sample period, on letting 759 = 1 (or 139 = 1).
When 6; = 0, no explosive regime is present, and we also assume
dr = 0, so that collapse regimes do not occur without a prior
bubble.
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@ The null hypothesis, Hy, is that no bubble is present in the series
such that y; follows a unit root process throughout the sample
period, i.e. Hp : 61 = 0 (and hence , = 0). The alternative
hypothesis is given by H; : §; > 0, and corresponds to the case
where a bubble is present in the series, which either runs to the
end of the sample (if 7oy = 1), or terminates in-sample, either with
or without a subsequent collapse regime depending on whether
0 =0ordr > 0.
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3. The PWY Test

o To test Hj against H;, PWY propose a test based on the largest of
the sequence of recursive right-tailed DF tests. For serially
uncorrelated ¢;, the PWY statistic is

PWY = max DFy+

Te(19,1]

where DF ; is the standard DF statistic, ie the f-ratio for 43 =0in
the fitted OLS regression

Ay =&+ Pyi—1+ & )

calculated over the sub-sample t = 1,..., [T, i.e.

DFy+ = T('b
~ T — \2
Vo £ e = 50)
where j; = (|tT| —1)"! ZE? Y1 and
02 = (|T| -3) 1o &,
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@ The PWY statistic is therefore the largest of a sequence of forward
recursive DF statistics with minimum sample length | 7pT |. In
what follows we follow PWY and set 1p = 0.1.

@ The test rejects for large positive values of the PWY statistic. The
null distribution of the PWY statistic is not standard normal,
however. Critical values obtained by simulation methods are
provided in PWY.

@ The PWY test is designed to detect a single bubble occurring at
some point in the sample.

@ Where ¢; is serially correlated, sufficient lagged dependent
variables must be included in (2).
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4. The PSY Tests

@ Rather than being based on the largest of the sequence of forward
recursive sub-sample DF statistics, the first test proposed in PSY
takes the largest of the sequence of backward recursive
sub-sample DF statistics; i.e.,

BSADF = max DF;;
TG[O,l—T@}

where DF. ; is now the standard DF statistic calculated as before
but over the sub-sample t = | 7T, ..., T. Critical values in PSY. The
test rejects for large positive values of BSADF.

@ This test is considerably more powerful than the PIWY test to
detect a single explosive episode at the end of the sample.
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@ The second procedure proposed in PSY is designed for the case
where the series may contain more than one bubble episode. It is
based on a doubly recursive sequence of sub-sample DF tests.
This is the same as running a set of rolling sub-sample windows
through the sample for windows of different width. This design is
ideally suited to picking up multiple pockets of explosive
behaviour in the sample.

@ The double recursive test rejects for large positive values of

GSADF = max DF,, .,

ra€lro1],r1€[0,r2—10]

where DF,, ,, denotes the standard DF test calculated using the
observations t = |1 T}, ..., [, T|. Critical values in PSY.
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@ A number of interesting issues surround the PWY and PSY tests.

@ A rejection suggests explosive behaviour somewhere in the
sample. But the tests do not tell us where the bubbles occur. PWY
and PSY develop auxiliary procedures, conducted where the
bubble detection tests reject, to date stamp the beginning and end
of the bubble regime(s).

@ Like standard full sample DF tests, the PWY and PSY tests assume
the errors, ¢;, are homoskedastic. It is not hard to see that if ¢;
displayed a period of very high volatility in a sub-sample of the
data that this would be observationally similar to an explosive
bubble. Harvey, Leybourne, Sollis and Taylor (2016) show that the
PWY test severely spuriously over-rejects the null hypothesis in
such cases. The problem can be solved by using bootstrap
methods. We will return to this issue in Topic RT4.
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@ The tests in PWY and PSY have tended to be used retrospectively,
eg to see if there is statistical evidence of a DotCom bubble etc.
But in reality we may be much more interested in real-time
monitoring of the data with a view to picking up a bubble NOW as
early as possible while it is on-going. As we will see, the BSADF
test can be used for this purpose, although it does not deliver the
best possible chance of detecting end-of-sample bubbles as they
happen.
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5. The AHLT Tests

e For simplicity of exposition consider the simpler version of the
bubble DGP defined earlier:

yi = p+u, t=1,.,T+m (3)
B up1+¢, t=1,.,T,
e { Py 1 +e, t=T+1,.,T+m @

with ¢ > 1 and where the total sample length is equal to
N=T+m.

@ The series {y; } follows a unit root process for the first T
observations and is then subject to (potential) explosive AR
behaviour over the final 7 observations.

@ The length of the bubble, 1, is going to be small relative to the
remaining sample size T.
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o Astill, Harvey, Leybourne and Taylor (2017) [AHLT] propose a
testing methodology based on the end-of-sample instability
testing approach of Andrews (2003). Their procedures do not
require the length of the bubble to be increasing with the sample
size, as is required for the large sample validity of the PWY and
PSY tests.

@ The approach involves calculating the test statistic over a window
of m end-of-sample observations rather than over the sample as a
whole. A critical value for the test is obtained by (overlapping)
sub-sampling methods.

@ Specifically, T — m + 1 test statistics, analogous to the test statistic
of interest, are calculated using a rolling window of m
observations, from t = 1, ..., m throughtot =T —m+1,..,T
(called the training sample), yielding an empirical CDF for the null
distribution of the test statistic from which a critical value can be
taken.
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@ AHLT consider a number of tests within this Andrews-type
framework, where the intention is to distinguish between
Hp:¢ = 1and Hy : ¢ > 1in the end-of-sample window.

@ To do this, they compare a test statistic designed to detect
explosivity based ont = T +1,..., T + m, with a critical value
obtained from this same statistic applied to the T —m + 1
sub-samples prior to the end-of-sample window.
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@ A natural candidate to use in this approach is the DF statistic from
the regression

Ayy =&+ Pyi1+8&, t=j+1,.,j+m (5)

The test statistic of interest is calculated on the sub-sample

t =T+1,.., T+ m,with the critical value obtained using the test
statistics calculated on the sub-samples t = j + 1, ...,j + m, for each
ofj=1,..T —m (NBonly T — m sub-samples, as first lost due to
differencing the data).

@ Hy is rejected in favour of H; in the upper-tail of the statistic’s
distribution. Notice that lagged difference augmentation is not
required since any dependence in ¢; is common to all sub-samples.

@ The Andrews-type approach applied to DF will result in a
correctly sized test for large T, although for small 7z the test may
lack power because the autoregressive parameter p is likely to be
inaccurately estimated.
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@ A simple alternative statistic to employ in the Andrews-type
framework can be motivated by considering the properties of the
first differences of y;. Under Hy, Ay; = ¢; throughout the full
sample period. But under H, Ay; = ¢; up to time f = T, at which
point the bubble regime commences and Ay; = (¢ — 1)1 + €.

@ An explosive series cannot be differenced to stationarity. As such
Ay will be I(0) for the first T observations and explosive for the
final m observations. Andrews and Kim (2006) designed a test,
here denoted R, for an end-of-sample change from I(0) to I(1)
behaviour. This test should also have power against an explosive
alternative.
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@ The R statistic of Andrews and Kim (2006) is given by

j+m  [j+m 2
= Z (Z A15> . (6)
s=t

t=j+1

It will have power to detect both upwardly and downwardly
explosive series.

@ As upwards exploding series are arguably of greater relevance
than downwardly explosive series we could also utilise a
one-sided variant of R given by

+Tll /+m

S = Z Z Ays
t=j+1 s=
jH+m
= Z (t—7)Ay; @)
t=j+1
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o A feature of the Andrews-type approach using either the DF, R or
S statistics is that the size (probability of rejecting the null when it
is true) of the procedure will be (approximately) unaffected by the
presence of level shifts in the data or by the presence of
(temporary) bubbles in the training sample.

@ The approaches based on R and S are not robust to volatility shifts
in the training sample, however. But robustness can be achieved
by introducing straightforward sub-sample studentisations, viz:

S* .= > R* := R

4

]tiﬁl (Ayt)2 t=j+1 (Ayt)

@ Further variants with a White-type correction in the
studentisation are also considered in AHLT which are robust to
volatility shifts in both the training sample and the last
observations (see section 4 of AHLT for details).
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@ In practice, we need to make a choice regarding the window
width used when implementing the Andrews-type approach. The
true bubble length 72 is unknown. Tests will be estimated using
some window width 17’

@ Using too large a window width may impact the finite sample
power of the tests under H; as some data generated under H, will
be included in the test statistic of interest. Using too small a
window may also impact the finite sample power of the test as
some data generated under H; may be included in the sub-sample
statistics, thus distorting the critical value.
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6. Monte Carlo Power Studies

6.1 Power to detect a Single Bubble

@ We now examine the ability of the tests to detect a single explosive
bubble, and their properties following its collapse.

e First, data were generated according to the DGP

Yi—1+e&, t=1,..170,
) Py +e, t=171,..,180,
"= Y170 + €t t =181, (®)
Vi1 +e&, t=182,.,N

the rejection frequency for each test over the sub-samples
t=1,..,Ewith E = {160,161, ...,200} was calculated.
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o This simulation exercise is designed to examine how the
probability of each test to detect a bubble evolves as the bubble
episode continues.

@ Results are reported for a window width of " = 8, but results are
similar for other window lengths.
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@ As can be seen from these graphs, the AHLT tests are better able
to detect a short-lived bubble.

@ Moreover, the robustness of the AHLT tests to past bubble
episodes can be seen by the fact that the size of these tests are little
impacted by the past bubble once the test statistics of interest no
longer includes the crash date data point.

@ The size of the BSADF test drops to practically zero after the
collapse date and remains there for the remainder of the sample.
Indeed it is this feature that makes these statistics useful for
date-stamping bubbles.

@ We now examine how the size of the tests after a collapsed bubble
affects their ability to detect future bubbles.
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6.1 Power with Multiple Bubbles

@ To examine the behaviour of the tests when the sample contains
multiple bubbles, data were generated according to the DGP:

}/t—l + &ty t= 1/ ey TBl,O/
101y + &, t=TBio+1,..,TBi,.

Yy = yTBl,a + & = TBl,c' +1. (9)
yff'l + &ty = TBl,e + 2/ seey TBz,O/

1.01y;—1 +¢&, t=TBy,+1,..,N

where N = 200.

@ This DGP allows for the series to contain two bubbles, both an
end of sample bubble from t = TB;, + 1, ..., N and a mid-sample
bubble from t = TB;, + 1, ..., TB;, that collapses at t = TB;, + 1.
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@ Weset TB;y, = 190 and examine two cases:

@ The first is the case where the initial bubble and the end-of-sample
bubble are separated by a relatively long time period (TB;, = 95
and 7B, = 105).

@ The second is the case where the initial bubble and the
end-of-sample bubble are separated by a relatively short time
period (TB;, = 170 and TB;, = 180).

@ Again we utilise a window width for the AHLT tests of m’ = 8.
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Multiple Bubbles - Short Separation
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@ When the two bubbles are separated by a relatively long time
period, the size of the BSADF test has recovered to some extent by
the time of the second bubble.

e However, when the two bubbles are separated by a relatively
short time period, the undersize exhibited by the BSADF test
following a collapsed bubble severely impacts on its ability to
detect the second bubble.

o Comparing the two graphs we see that the distance between the
two bubble episodes has little impact on the ability of the AHLT
tests to detect the second bubble.
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7. Empirical Application

@ We now compare the performance of the S* test relative to the
BSADF test by undertaking the pseudo real-time detection
exercise of PSY. S* was chosen as further simulations show it to
have the best overall power of the AHLT tests.

@ Using monthly data on the S&P500 price dividend ratio from
1987M01-2010M12, we perform the S* test for samples ending at
each date in the sample, replicating how an on-going (real time)
bubble detection exercise would evolve.

@ We then record the earliest date that the S* test finds evidence of a
bubble for a number of known bubble episodes and compare this
to the first date bubble behaviour is detected by the BSADF test.

BE990-8-SP, Topic RT2 47 / 65



Detecting Financial Bubbles

Past Bubble BSADF Sz Sg STo

Post long-depression 1879M10 1879M10 1879M11 1879M11
The Great Crash 1928M11 1927M08 1927M08 1927MO08
Postwar Boom 1955M01 1954M02 1954MO05 1954MO05
Black Monday 1986M06 - 1986M04 1986M04
Dot-com Bubble 1995M11 1995MO05 1995M06 1995MO06

@ As can be seen, the S* test would often have detected past bubbles
sooner than the BSADF test if used as part of an on-going
monitoring exercise.

@ Using a smaller window width leads to earlier detection in some
instances, but using a window width of 5 the 5* test would have
failed to detect the bubble leading up to Black Monday.
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8. Real-time Monitoring for Bubbles

@ As we have seen in sections 5, 6 and 7, real-time monitoring for a
bubble could be undertaken by the repeated application (as extra
sample data becomes available with the passage of time) of the
end-of-sample one-shot bubble detection tests used in the
simulation study in section 6; e.g. the BSADF test of PSY or the R
(or R*) or S (or S*) tests of AHLT.

e However, there is an obvious problem with this approach. In
particular the false positive rate [FPR] of these monitoring
procedures would not be controlled and they would all eventually
signal a bubble with probability one, even where no bubble was
present in the monitoring period. This is an example of the
multiple testing problem bias.
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e We will now briefly discuss two real-time bubble monitoring
procedures which avoid the multiple testing issue such that the
practitioner can set the FPR they wish for the procedure.

@ The first is a CUSUM-based method, due to Homm and Breitung
(2012, Journal of Financial Econometrics).

@ The second, due to Astill et al. (2018, Journal of Time Series
Analysis), is an approach based on the one-shot tests of AHLT
from section 5, but which is able to deliver a controlled FPR.
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8.1 The Homm-Breitung CUSUM-based Procedure

@ Under the assumption that ¢; ~ IID(0,0?), and assuming a
training period of t = 1, ..., T, Homm and Breitung (2012) propose
testing for explosive behaviour in the monitoring period using the
following CUSUM statistic:

1 t
tj=T4+1

where t > T is the monitoring observation, and where 77 is a

consistent estimate of ¢2; in their numerical work, Homm and
Breitung (2012) use the first-difference estimator,

=2 . 1yt 2

02 = (t— 1)1, A2,
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e Homm and Breitung (2012) show that if the CUSUM statistic, S\,
is computed sequentially at dates t = T+ 1, ..., | AT|, then under
the null hypothesis, Hy, of no explosive behaviour, for any A > 1

T V25 W(r) - W(1), 1<r<A (10)
where W(r) is a standard Wiener process, and, hence, that

Tlim Pr(|S%| > c¢Vtforsomete T+1,.., |AT])
—00
< exp(—ba/2)

where ¢; := /b, + log(t/T).
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@ The CUSUM monitoring procedure proposed in Homm and
Breitung (2012) then rejects Hy if StT > ¢4/t for some t > T, with
an explosive episode signaled at the first time point f in the
monitoring period for which such an exceedance occurs. For such
a (one-sided upper-tail) test at the « = 0.05 significance level, the
appropriate asymptotic setting for b, used to compute ¢; is
by =4.6.

@ The CUSUM procedure has the maintained hypothesis that no
bubbles are present in the training sample.
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8.2 The MAX,, Procedure of Astill et al. (2018)

@ The MAX,, monitoring procedure of Astill et al. (2018) is based on
the sequential application of AHLTs statistic with White-type
studentisation:

G . th:tferl (j —t+m)Ay;
t .

— t - , t>T
\/Zj:t—;rz+l{(] —t+ m)Ay]}2

where, as before, m is a user chosen window width.

@ The MAX,, procedure signals the presence of an explosive episode
ifatany point t, T < t < |TA|, during the monitoring period the
statistic S;“ exceeds the maximum value across the corresponding
sequence of statistics 57,7 = m +1,..., T —m + 1, calculated over
the training period; that is, H is rejected if
MaXye[T41,[AT)] S > MAXke it 1,T—m+1] Sk -
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@ Under the null hypothesis the FPR is approximately equal to the
ratio of the number of test statistics conducted in the monitoring
period to the number of test statistics conducted across the
monitoring and training periods combined.

o Astill et al. (2018) demonstrate that an approximation to the FPR
of this procedure is given by
AT| —T
= 11
AT —2mt1 (11
The FPR of the MAX,, monitoring procedure at any point ¢,

T <t < |TAJ, in the monitoring period can be computed using
(11) by replacing |AT | with .
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o The FPR is a function of the length of the training period, T, the
window width, 7, used in the S;® statistics, and of the length of
the monitoring horizon, |TA .

@ We can use the formula to calculate the maximum monitoring
horizon such that the FPR is controlled at some chosen value, «*.

@ A shorter training period, ending at time [T | —m+ 1,y <1,
could be used instead. This will alter the FPR of the procedure.

@ The Astill et al. (2018) monitoring procedure is robust to bubbles
in the training sample and to time-varying volatility (changes in
the variance of ¢;) while the CUSUM of Homm and Breitung
(2012) is not. Astill et al. (2023) generalise the CUSUM method to
allow for time-varying volatility in ¢;; this method is also robust to
the presence of bubbles in the training sample.

BE990-8-SP, Topic RT2 56 / 65



Detecting Financial Bubbles

References

Note: A large number of the references cited in the text can be
found in Phillips, Wu and Yu (2011) and so are not repeated
here. References from Topic RT1 are not repeated.

@ Andrews, D.W.K. (2003). End-of-sample instability tests.
Econometrica 71, 1661-1694.

@ Andrews, D.W.K. and Kim, J.-Y. (2006). Tests for cointegration
breakdown over a short time period. Journal of Business and
Economic Statistics 24, 379-394.

e Astill, S., Harvey, D.I., Leybourne, S.J. and Taylor, A M.R. (2017).
Tests for an end-of-sample bubble in financial time series.
Econometric Reviews 36, 651-666.

e Astill, S.,, Harvey, D.I., Leybourne, S.J., Taylor, AM.R,, and Zu, Y.
(2003). CUSUM-based monitoring for explosive episodes in
financial data in the presence of time-varying volatility. Journal of
Financial Econometrics 21, 187-227.

BE990-8-SP, Topic RT2 57 / 65



Detecting Financial Bubbles

e Astill, S.,, Harvey, D.I., Leybourne, S.J., Sollis, R. and Taylor,
AMR. (2018). Real-time monitoring for explosive financial
bubbles. Journal of Time Series Analysis 39, 863-891.

@ Bettendorf, T. and Chen, W. (2013). Are there bubbles in the
sterling-dollar exchange rate? New evidence from sequential ADF
tests. Economics Letters 120, 350-353.

@ Gilbert, C.L. (2010). Speculative influences on commodity futures
prices 2006-2008. Discussion Paper 197, United Nations
Conference on Trade and Development (UNCTAD), Geneva.

e Harvey, D.I, Leybourne, S.J., Sollis, R. and Taylor, A.M.R. (2016).
Tests for explosive financial bubbles in the presence of
non-stationary volatility. Journal of Empirical Finance 38, 548-574.

BE990-8-SP, Topic RT2 58 / 65



Detecting Financial Bubbles

e Homm, U. and Breitung, J. (2012). Testing for speculative bubbles
in stock markets: a comparison of alternative methods. Journal of
Financial Econometrics 10, 198-231.

e Phillips, P.C.B., Shi, S.-P. and Yu, J. (2015). Testing for multiple
bubbles: historical episodes of exuberance and collapse in the S&P
500. International Economic Review 56, 1043-1078.

e Phillips, PC.B., Wu, Y. and Yu, J. (2011). Explosive behavior in the
1990s Nasdaq: when did exuberance escalate stock values?
International Economic Review 52, 201-226.

BE990-8-SP, Topic RT2 59 / 65



	Background Material
	Sub-sample tests for Stochastic Bubbles
	The PWY Tests


