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Is there any Predictability in the Equity Premium?
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Dividend yield: Forward Recursive IV regression estimates and pointwise
CIs, 1950-2017 (Goyal/Welch 2008 updated monthly data).
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... what about the persistence of the predictor?
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The equity premium looks very mean reverting etc (almost noise), but the
dividend yield looks strongly persistent (usual ADF test has p-value of
0.41).
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The Basic Predictive Regression Set-up

Consider the predictive regression

yt = αy + β xt−1 + εyt

where

xt = φxt−1 + εxt,

with (εxt, εyt)
′ ∼ iid(0,Σ) where

Σ = E

((
εxt
εyt

)(
εxt εyt

))
=

(
σ2x σxy
σxy σ2y

)
.

Null hypothesis: xt−1 does not predict yt, i.e.

H0 : β = 0 .

Yet, even in this simplest setup...
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Endogeneity and (high) Persistence

Should

I the shocks εyt and εyt correlate (so that ρxy := σxy/σxσy 6= 0; for
the EP-DY data above this correlation is estimated to be
ρ̂xy = −0.98), and

I the regressor xt be autocorrelated,

one speaks of endogeneity. (A bit of a misnomer.)

Under endogeneity and high persistence (near integration, φ = 1− c/T),

I the OLS estimator is 2nd order biased and

I the t-statistic has a non-normal limiting distribution.

See Elliott/Stock (1994), Stambaugh (1999), Campbell/Yogo (2006) etc.

No problem when regressors are stationary or weakly persistent.
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OLS t-statistics, T = 305
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More trouble with variance breaks - volatility of both
shocks 3 times higher in the �rst 20% of the sample ,
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Popular Solutions in the Literature

If φ were known, one could employ GLS estimation. For unknown φ:

I Bayes methods - Elliott/Stock (1994)

I Bonferroni - Campbell/Yogo (2006), but see Phillips (2012)

I Restricted log-likelihood - Jansson/Moreira (2006), Chen/Deo (2009)

I Almost optimal tests - Elliott et al. (2015)

I Variable addition - Toda/Yamamoto (1995), Dolado/Lütkepohl
(1996)

I Generic IV estimation - Breitung/Demetrescu (2015)

I IVX method of Kostakis et al. (2015)
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Our Contribution to the Literature

I We develop new predictability tests in these circumstances based on
simple regression t-ratios.

I The simplest test, optimal under Gaussianity for a weakly persistent
and exogenous predictor, is based on the standard t-statistic.

I Where xt is endogenous an optimal, but infeasible, test for
predictability is based on the t-ratio on the lagged predictor when
augmenting the basic predictive regression with the predictor's
current period innovation, εxt.

I We propose a feasible version of this test, designed for the case
where the predictor is an endogenous near-unit root process, using a
GLS-based estimate of this innovation.

I We also discuss a variant of the standard t-ratio obtained from the
predictive regression of OLS demeaned returns on the GLS demeaned
lagged predictor.
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Our Contribution to the Literature

I In the near-unit root case, the limiting null distributions of these
three statistics depend on both ρxy and c. We propose a feasible
method for obtaining (conservative) asymptotic critical values and
give response surfaces for these.

I To develop procedures which display good size and power properties
regardless of the degree of persistence of the predictor, we propose
tests based on weighted combinations of the t-ratios discussed
above, the weights obtained using the p-values from a unit root test
on the predictor.

I Despite their simplicity, the weighted tests display very good �nite
sample size control and power across a range of persistence and
endogeneity levels for the predictor, comparing favourably with the
leading tests in the extant literature.
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The Predictive Regression Model

I We consider the predictive regression for yt, the (excess) stock return
in period t, by xt−1 a putative predictor variable at time t− 1:

yt = αy + βxt−1 + εyt, t = 2, ..., T (1)

where xt is an observed process, speci�ed according to the DGP

xt = αx + st, t = 1, ..., T

st = φst−1 + εxt, t = 2, ..., T (2)

with s1 a mean zero Op(1) random variable.
I The innovation vector εt := (εxt, εyt)

′ is assumed for the presentation
to be IID with �nite fourth order moments and satisfying[

εxt
εyt

]
∼ IID

(
0,

[
σ2x σxy
σxy σ2y

])
.

I The paper shows how the methods discussed can be modi�ed to
allow for weak dependence and/or heteroskedasticity in εt.
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Uncertain Persistence

I With respect to the degree of persistence in xt, we allow φ in (2) to
satisfy one of the following two assumptions:

Assumption 1

One of the following two conditions is assumed to hold:

1. Weakly persistent predictors: (W) The autoregressive parameter φ in
(2) is �xed and bounded away from unity, |φ| < 1.

2. Strongly persistent predictors: (S) The autoregressive parameter φ in
(2) is local-to-unity with φ := 1− c

T where c is a �xed non-negative
constant.
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Cholesky decomposition

I The familiar Cholesky decomposition allows us to write the two
components of εt in the form

εxt = σxe1t (3)

εyt = σy

(
ρxye1t +

√
1− ρ2xye2t

)
where et := (e1t, e2t)

′ ∼ IID (0, I2).

I Using this representation, we can then re-write (1) as

yt = αy + βxt−1 +

(
σy
σx
ρxy

)
εxt +

(
σy

√
1− ρ2xy

)
e2t (4)

which demonstrates how a predictive regression featuring an
endogenous predictor xt−1, such as (1), can be re-written using εxt
as an additional covariate in a form in which the predictor regressor,
xt−1, is strictly exogenous.
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Null and Alternative Hypotheses

I We will test the null that yt is not predictable by xt−1, i.e.
H0 : β = 0 in (1), without the practitioner needing to know which of
Assumption S or Assumption W holds in (2).

I The alternative hypothesis is that yt is predictable by xt−1, ie. β 6= 0.

I Predictive regressions for stock returns typically exhibit a small R2

and low signal-to-noise ratios so departures from the null are likely to
be small. We therefore focus on local alternatives such that the slope
parameter β is local-to-zero.

I Where xt is strongly persistent the appropriate local alternative is
given by Hg,S : β = gT−1, while for weakly dependent xt, it is given
by Hg,W : β = gT−1/2, where in each case g is a �nite constant.
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Predictability Tests - An Infeasible Test

I Consider the generically notated regression model:

yt = α+ βxt−1 + δzxt + vt. (5)

and consider the t-test associated with the OLS estimate of β in (5).
I If εxt was observed (abstracting from the constant αx, this is

equivalent to knowing φ), we could then perform a standard OLS
regression in (5) with zxt = εxt, which is clearly a correct
speci�cation with respect to the DGP in (4).

I Denote the infeasible t-statistic as tinf . This has a standard normal
limiting distribution under H0, under either Assumption S or
Assumption W . Moreover, under Gaussianity this would deliver an
e�cient test (among αy, αx invariant tests) whenever ρxy 6= 0.

I Including εxt as a regressor reduces the error variance from σ2y to
σ2y(1− ρ2xy); ie, with knowledge of φ we can subtract o� the part of
the innovation to returns that is correlated with the innovation to
the predictor variable, delivering a more powerful test.
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Feasible Tests I - a standard t-statistic

I The standard t-statistic based on (1) is e�ectively based on an OLS
regression that omits zxt from (5). Denote this statistic as t.

I t has a standard normal limiting null distribution under Assumption
W for any value of ρxy, and thus has the potential for nuisance
parameter free inference in this world. With respect to (4), t is based
on a correctly speci�ed regression when ρxy = 0, but when ρxy 6= 0,
the regression omits a relevant regressor; while this does not a�ect
the limiting null distribution, t will be ine�cient relative to the
infeasible test in the ρxy 6= 0 case.

I Under Assumption S, t has a standard normal limit null distribution
provided ρxy = 0, in which case it is also e�cient. When ρxy 6= 0, its
limit null distribution depends on ρxy and c, and is expected to be
highly ine�cient in this strongly persistent case, due to the lack of
any proxy for εxt in the underlying regression.
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Feasible Tests II - a variant t-statistic

I We also consider a variant of the standard t-statistic that might be
considered more appropriate for strongly persistent xt.

I The standard t-statistic regression (1) is equivalent to regressing
OLS demeaned yt on OLS demeaned xt, which implicitly uses
x̄−1 := (T − 1)−1

∑T
t=2 xt−1 = Op(T

1/2) as an estimate of αx.
More natural in the strongly persistent xt context is a generalised
least squares [GLS]-type demeaning for xt, using x1 = Op(1) as an
estimator for αx instead of x̄−1. We therefore consider a t-statistic
associated with the OLS estimate of β in the model

(yt − ȳ) = β(xt−1 − x1) + vt

which we denote by t′.
I Under Assumption S the asymptotic null distribution of t′ will depend

on ρxy and c. Under Assumption W , the limiting null distribution of
t′ will depend on the (unknown) distribution of s1, hence t

′ is only
designed for use in the strongly persistent world (in contrast to t).
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Feasible Tests III - A t-stat based on a proxy measure for εxt

I Can we obtain a proxy measure for εxt? There are a number of ways
this could be done. Campbell and Yogo (2006) use a
Bonferroni-based method. We consider an approach based on
including a covariate zxt in (5) to act as a direct proxy for εxt in (4).

I Under Assumption S a proxy for εxt can be obtained by assuming a
particular value for c, say c̄. Then construct zxt =
xt − (1− c̄T−1)xt−1 (assuming αx = 0 for simplicity). If c̄ = c, then
zxt = εxt and we obtain the asymptotically standard normal and
e�cient test, tinf . But if c̄ 6= c the critical values for this test will
depend on both ρxy and c, and it will no longer be e�cient, with
power being a (decreasing) function of the distance |c− c̄|. Recall
that c cannot be consistently estimated.

I An obvious proxy for εxt is given by setting zxt equal to the OLS
estimate, ε̂xt say, obtained from an OLS regression of ∆xt on a
constant and xt−1. But this residual is exact orthogonal to xt−1 and
so the resulting t test delivers identical inference to t.
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Feasible Tests III - A t-stat based on a proxy measure for εxt

I An alternative proxy which takes account of a strongly persistent
autoregressive structure in estimating the intercept term αx, is to
use the GLS-type estimator of αx as in t′. So set zxt = ε̃xt in (5) the
residuals from regressing ∆xt on (xt−1 − x1).

I Unlike ε̂xt, ε̃xt is not orthogonal to xt−1 which raises the potential
for ε̃xt to proxy εxt in the strongly persistent case. The resulting
t-statistic is denoted t∗.

I Under Assumption S, the limiting null distribution of t∗ depends on
ρxy and c in the case where xt is strongly persistent (Assumption S).
Under Assumption W st and s1 are both of Op(1), and the
asymptotic distribution t∗, like t′, depends on the distribution of s1.
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Asymptotic Critical Values I

I Under Assumption S the limiting null critical values of t, t′,and t∗

depend on the unknown parameters ρxy and c.

I Although ρxy can be consistently estimated, c cannot. We therefore
adopt a scheme for simulating critical values designed to yield
asymptotically conservative tests.

I To illustrate, consider t and denote its null limit distribution under
Assumption S by S(0, ρxy, c). For expository purposes we will focus
attention on upper-tail critical values for upper-tailed tests. The
corresponding procedure for lower-tailed (or two-tailed) tests can be
obtained in an entirely analogous fashion, or simply by using −xt−1
rather than xt as the predictor variable and carrying out upper-tailed
tests as outlined next.
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Asymptotic Critical Values II

The steps to obtaining the conservative critical value are as follows:

1. For a chosen value of ρxy, simulate the null distribution S(0, ρxy, c)
for di�erent c across an interval c ∈ [0, cmax].

2. At each value of c, compute the α-level upper-tail critical value,
cvα(ρxy, c) say.

3. Set the α-level critical value for t equal to
cvα(ρxy) := maxc∈[0,cmax] cvα(ρxy, c).
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Asymptotic Critical Values III

I Using cvα(ρxy) will yield a correct α-level sized test when
c = arg maxc∈[0,cmax] cvα(ρxy, c), and give a conservatively sized test
for other values of c.

I Direct simulation methods were used across values of
ρxy ∈ [−0.950,−0.925,−0.900, ..., 0.900] with cmax = 50,
evaluating the critical values for c ∈ [0, 2, 4, ..., 50] for α = 0.05 and
α = 0.10. For most values of ρxy, arg maxc∈[0,cmax] cvα(ρxy, c) is
obtained for c much smaller than cmax; eg, for ρxy = −0.9, it is
obtained at c = 0 for both values of α.

I For a given value of ρxy, we give a response surface from regressing
cvα(z) on [1, z, z2, ..., z8] with z = ρxy for the 75 data points
corresponding to the grid of values for ρxy.
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Asymptotic Critical Values IV

I In practice, substitute ρxy by a consistent estimate in the �tted
response surface.

I To that end, we use

ρ̂xy :=

∑T
t=2 ε̂xtε̂yt√∑T

t=2 ε̂
2
xt

∑T
t=2 ε̂

2
yt

ε̂yt are the OLS residuals from regressing yt on a constant and xt−1,
and ε̂xt are the OLS residuals from regressing ∆xt on a constant and
xt−1. This estimator is consistent under either Assumption S or
Assumption W .

I Tests based on comparison of t, t′ and t∗ with their asymptotically
conservative critical values will be denoted by tC , t

′
C and t∗C ,

respectively.
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Monte Carlo Design

I Compare the �nite sample properties of the tC , t
′
C and t∗C tests for

T = 200 (qualitatively similar results for other sample sizes).

I We generate (1)-(3) with (e1t, e2t)
′ ∼ IIDN (0, I2) and drawing s1

as a standard normal variate, setting αy = αx = 0 without loss of
generality.

I In the simulations we deliberately blur the distinction between strong
persistence and weak dependence of the predictor by setting
φ = 1− c/200 and varying c ∈ [0, 1, 2, ..., 200], such that xt varies
between a pure random walk and a pure white noise process.

I We conduct upper-tailed tests at the nominal 0.05 level, using the
asymptotic conservative critical values obtained as described just
now. All based on 20,000 Monte Carlo replications.
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Back

(a) ρxy = −0.95 (b) ρxy = −0.9

(c) ρxy = −0.5 (d) ρxy = 0

(e) ρxy = 0.5 (f) ρxy = 0.9

Figure 1. Finite sample size of nominal 0.05-level tests, T = 200;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Empirical Size Properties I

I Figure 1 - sizes of tC , t
′
C and t∗C across c for di�erent values of ρxy.

As a size benchmark also include a test that compares the statistic t
with its asymptotic critical value in the weak dependence case, i.e.
1.645 from N(0, 1); this test is denoted tN .

I Panel (a) ρxy = −0.95:

I tN is very badly over-sized for small c, while its empirical size gets
closer to the nominal 0.05 level for large c.

I tC has near-correct empirical size with c = 0, but undersized for
c > 0, increasingly so as c increases. Interestingly, although the
response surface critical values are obtained under Assumption S,
empirical sizes for c = 50 through to c = 200 seem to vary very little.

I Sizes of t′C and t∗C roughly correct for small c, and while, like tC , they
fall below the nominal level for larger c, the rate at which this occurs
is much less severe.

I t′C holds on to size better for larger values of c than t∗C which may
have implications for the relative power of the two in this region.
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Empirical Size Properties II

I Panel (b), ρxy = −0.90: very similar to those for ρxy = −0.95.

I Panel (c), ρxy = −0.5: tN remains over-sized, the other three tests
tend to be less under-sized for large c, particularly t′C .

I Panel (d), ρxy = 0: all four tests display decent empirical size across
c. As expected, sizes of tC and tN are similar.

I Panels (e) and (f): ρxy = 0.5, 0.95: all tests are under-sized for small
c, while the sizes for tN , tC and t′C all lie reasonably close to the
nominal level for larger c. Size of t∗C diverges badly outside of the
small c region, indicating that the asymptotic critical values obtained
under the strong persistence assumption for c up to cmax are not
appropriate here.

I Overall, for negative ρxy, the best �nite sample size control is given
by t′C for larger c, with little to choose between t′C and t∗C for smaller
c. For positive ρxy, t

∗
C is best avoided unless c is small.
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Empirical Power Properties I

I Next we simulate powers across g (≥ 0), with β = g/200, for
di�erent values of ρxy and c.

I Figure 2, ρxy = −0.95:

I Note here the powers of tN are fairly meaningless outside of panel (f)
where c = 200, due to its over-size discussed above.

I For c = 0, tC and t∗C are the most powerful tests when c = 0, with t′C
having somewhat lower power.

I For c = 10, t∗C and t′C have similar power levels both substantially
higher than tC . Same largely true for c = 25.

I For c = 50, 100 and 200, t∗C falls well behind t′C . For c = 200, tN has
correct size and, unsurprisingly given the under-sizing seen in the
other tests, the most power.

I On the basis of these results, t′C and t∗C give the best performance
across small to moderate values of c, yet we would hold a distinct
preference for t′C for the larger values of c.
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 2. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :Finite Sample Simulations I 37 of 71



Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt
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Empirical Power Properties II

I For ρxy = −0.9 and ρxy = −0.5 (Figures 3 and 4), we draw similar
conclusions.

I For ρxy = 0 (Figure 5), it becomes hard to draw any �rm conclusions
regarding the relative test rankings, since the power pro�les are
generally very similar across c (the only real exception to this is the
lower power of t′C when c = 0).

I When the correlation is positive (Figures 6 and 7), the tests again
behave similarly when c is small (again excepting t′C when c = 0),
while for large c the tC , t

′
C and tN tests have broadly similar power

pro�les, while the power for t∗C is rendered uninformative because of
its extreme over-size for large c.
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Weighted Tests I

I Given the foregoing simulation results it would seem sensible to
envisage a testing procedure based on suitably combining the
statistics t′ and t∗.

I Such a combination should involve both the statistics when c is of
small to moderate magnitude, since neither of the t′C and t∗C tests
are really dominant in terms of power across this region of c taken as
a whole, and so it makes sense to permit both statistics to have the
opportunity to provide evidence against the null.

I For larger c, the combination should revert to the t′ statistic alone,
because of the better power of the t′C test, and the far superior size
control when the correlation is positive.
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Weighted Tests II

I An obvious way to do this is to use a simple weighting based on the
p-value from a unit root test applied to xt with the usual property
that the further is the dominant autoregressive root of xt from unity,
the closer is the p-value of the unit root test to zero.

I Consider a generic unit root statistic, UR, and denote by pUR the
(asymptotic) p-value associated with UR.

I Based on pUR we can then de�ne a weighted statistic, denoted tw, as

tw := (pUR)λt∗ + {1− (pUR)λ}t′

where λ is a positive constant.

I So, for small c, pUR will be non-zero and tw will combine inference
from both t∗ and t′. For larger c, pUR will tend to be smaller (with
xt appearing less persistent) and so the majority of the weighting in
tw will shift to t′. For very large c, pUR is essentially zero, at which
point tw coincides with t′.
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Weighted Tests III

I We consider a further weighted test designed to improve power under
low persistence.

I Under Assumption W , the tN test is valid with an attractive power
pro�le; see c = 200 results for φ = 0. For negative ρxy, the power of
tC test is adversely a�ected because t has to be be compared with
conservative critical values dominated by the behaviour of t at c = 0.

I Additional power could be obtained by integrating t into the
weighted statistic when c is very large. To that end,

twt := twI(pUR > τ) + tI(pUR ≤ τ), τ > 0

I If the user-speci�ed cut-o� value τ is chosen suitably small, then for
small c, twt will typically be tw rather than t, so t cannot in�ate the
critical values of twt too much in this region. Then, for large c, when
twt is typically t, twt will be using less conservative critical values
than those required to control the size of tC , thereby improving
power in this region.
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Weighted Tests IV

I Under Assumption S, the asymptotic distributions of tw and twt

depend in general on ρxy, c, the choice of λ, and on the speci�c unit
root test statistic, UR, used in de�ning the weights. Additionally,
the limiting distribution of twt depends on the choice of τ .

I Under Assumption W , twt and t are asymptotically equivalent, by
virtue of that fact that τ is a positive constant.

I So again we need to obtain simulated asymptotic critical values that
will yield asymptotically conservative tests based on tw and twt.
These critical values will depend on the speci�c choice made for the
unit root statistic, UR.
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Asymptotic Critical Values

I For UR we chose the familiar local-GLS detrended Dickey-Fuller
statistic of Elliott et al. (1996) for c̄ = 0, denoted DF ; ie, the OLS
t-statistic for φ = 0 in the regression model

∆xt = φ(xt−1 − x1) + vt.

I DF satis�es the necessary regularity conditions for UR, and is
simple to compute. We found that it led to weighted tests with
superior �nite sample properties to other common unit root tests.
Based on experimentation, we set λ = 2 and τ = 0.01.

I We used direct simulation to obtain limiting p-values for DF and
give a self-contained response surface, but a valid bootstrap could
also be used.

I Conservative asymptotic critical values for the tw and twt statistics
are calculated in essentially the same manner as for t, t′ and t∗. A
response surface is given in the paper. Denote the tests based on
comparison of tw and twt with these critical values by twC and twtC .
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Empirical Size

I Figure 1 Striking similarity between the size properties of twC and t′C .
Only for ρxy = 0.9 do their sizes appear to di�er in any way, with twC
being more under-sized across c.

I For positive ρxy, t
w
C does not exhibit the large over-sizing outside of

small c associated with t∗C . Why? For the larger c values considered,
pDF will tend to be small, with the result that t∗ will generally
receive a low weight in tw.

I twtC has accurate size across c for negative values of ρxy, establishing
it as easily the most reliably sized test in those cases. Elsewhere,
some under-sizing for small c, although as this is generally a feature
of all of the tests, twtC is still very competitive. Comparing twC and
twtC , for larger values of c, twtC is notably less under-sized, re�ecting
its switch into t alone when pDF is small.

I Interestingly, twC and twtC are the only approximately correctly sized
tests when ρxy = 0.9 and c = 0.
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Empirical Power I

I ρxy = −0.95: Figure 2

I For c = 0, twC and twt
C emerge as easily the most powerful tests

(ignore tN as grossly over-sized here) with similar power, both well
exceeding the power of the third placed tests tC and t∗.

I For c = 10 and c = 25, t′C , t
∗
C , t

w
C and twt

C show broadly similar power
pro�les.

I For c = 50 twt
C emerges as most powerful, with twC tying for second

place with t′C . This because t
w is now placing most weight on t′,

while twt is now very regularly switching into t. Same rankings for
c = 100 and 200, but the power advantage of twt

C over twC increases
with c. Notice for c = 200, twt

C has power approaching the levels
associated with tN (which is correctly sized here).

I Same observations regarding power ranking also apply for
ρxy = −0.9 and ρxy = −0.5 Figure 3 and Figure 4 .
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Empirical Power II

I For ρxy = 0 Figure 5 neither twC nor twtC dominates the best of the
other tests, but the power di�erences involved are very modest.

I For ρxy = 0.5 Figure 6 , twtC is arguably the best performing test
overall, albeit by a small margin. For the larger c values, we see that
twtC again outperforms twC .

I For ρxy = 0.9 Figure 7 , when c = 0, twC and twtC are easily the best
performing tests, by virtue of the other tests having very low
empirical size here, as discussed earlier. For large c, the dominance
of twtC over twC is quite evident.

I Summing up, it seems reasonable to conclude that twtC o�ers the best
overall combination of �nite sample size control and provision of
power. We therefore next compare twtC with the leading predictability
tests currently available in the literature.

Finite Sample Simulations II 49 of 71



Comparison with Extant Tests

I We compare twtC with: Campbell and Yogo's Q test (one-sided, upper
tail), the (two-sided) instrumental variable test of Breitung and
Demetrescu (2015) using sine and fractional instruments, denoted
BD; and the IVX test of Kostakis et al. (2015), with IV X1 and
IV X2 denoting one-sided (upper tail) and two-sided tests,
respectively.

I All tests were run at the 5% level and implemented using settings
appropriate for IID errors (we �xed the AR lag to one in Q, and
used short run variance estimators in IV X, setting Mn = 0 in the
notation of Kostakis et al., 2015).

I As discussed in Kostakis et al. (2015, p.1514) the IVX instrument
does not need to be demeaned because the slope estimator in the
predictive regression is invariant to whether the instrument is
demeaned or not. In calculating the IV X1 and IV X2 tests we
implemented the �nite-sample correction factor outlined in Kostakis
et al. (2015, p.1516).
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Back

(a) ρxy = −0.95 (b) ρxy = −0.9

(c) ρxy = −0.5 (d) ρxy = 0

(e) ρxy = 0.5 (f) ρxy = 0.9

Figure 8. Finite sample size of nominal 0.05-level tests, T = 200;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 51 of 71



Empirical Size

I The standout feature in Figure 8 is that CY's Q test is very badly
over-sized, for any value of ρxy 6= 0, unless c is small. The invalidity
of the Q test for weakly stationary xt is clearly seen as c becomes
large.

I Another prominent feature is that the lower-tailed IV X1 test is
badly over-sized for negative ρxy and under-sized to a similar degree
for positive ρxy when c is small.

I Of all of the tests considered, BD arguably appears to o�er the most
precise �nite sample size control overall, followed by twtC and IV X2.

I Among the one-sided tests it is fair to conclude that twtC o�ers the
best size performance, in particular it avoids the issue of over-sizing
seen with other one-sided tests.
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 9. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 53 of 71



Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 10. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 54 of 71



Empirical Power I

I ρxy = −0.95 Figure 9 :

I For c = 0 (ignoring IV X1 due to its signi�cant over-size discussed
above) twt

C is generally the most powerful test, outperforming Q for
all but the larger values of g considered and easily dominating both
IV X2 and BD.

I Little to choose between twt
C , Q and IV X2 for c = 10 and c = 25,

BD having comparatively very low power here. IV X1 and twt
C are

the best performing tests for the larger values of c considered (IV X1

no longer being over-sized), and here there is relatively little to
separate them. It is also interesting to note that Q is both over-sized
and has poor power here.

I Results for ρxy = −0.9 Figure 10 are very similar to those for
ρxy = −0.95.
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Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 11. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 56 of 71



Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 12. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 57 of 71



Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 13. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 58 of 71



Back

(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 14. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -Finite Sample Simulations II 59 of 71



Empirical Power II

I For ρxy = −0.5 Figure 11 Q emerges as the most powerful test when
c = 0 (IV X1 is still over-sized here for small c) but is only
marginally more powerful than twtC .

I For moderate and large values of c, IV X1 and twtC provide the
highest powers and are similar to each other. Again, Q has poor
properties for large c.

I For ρxy = 0 Figure 12 there is generally little to choose between twtC ,
Q and IV X1.

I For ρxy = 0.5 Figure 13 twtC arguably has the best power performance
overall. A similar claim could legitimately be made when ρxy = 0.9
Figure 14 , particularly given the performance of twtC for c = 0.
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Summary

I Based on these simulation results, we conclude that twtC o�ers
appealing size and power properties when compared to the leading
currently available testing procedures.

I It would be fairly naïve to believe, a priori, that any one single test
would have the best �nite sample size and power properties across
the full constellation of settings for the persistence level in the
predictive regressor and the correlation coe�cient between the
innovations in the model we have considered.

I However, twtC does appear to perform consistently well in terms of
both size and power across these settings, never seemingly showing a
substantial weakness in either dimension, something which appears
to be rather less true of its extant competitors.
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Data

I Monthly U.S. equity series analysed in Welch and Goyal (2008),
using updated data for the period 1970:1-2017:12 (T = 576)
available at http://www.hec.unil.ch/agoyal/.

I Dependent variable, yt, is S&P 500 value-weighted log excess return.

I We consider thirteen putative predictor variables for xt: dividend
price ratio, earnings-price ratio, dividend-payout ratio, dividend yield,
default yield spread, long-term yield, default return spread, stock
variance, net equity expansion, in�ation rate, Treasury bill rate, term
spread and book-to market value ratio. Details in Welch and Goyal
(2008).
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Test Procedures Applied

I Apply tC , t
′
C , t

∗
C , t

w
C and twtC , employing UR = DF , λ = 2 and

τ = 0.01.

I Lagged di�erence terms in ∆xt were added to the underlying OLS
regressions for ε̂xt and ε̃xt and DF determined using BIC selection
starting from a maximum value of pmax = 12.

I We also apply BD, IV X1 and IV X2 and Q (the latter being
one-sided, applied at the asymptotic 0.05 level). The IV X statistic
was calculated using long run variance estimators with Mn =

⌊
T 1/3

⌋
in the notation of Kostakis et al. (2015), and Q was implemented
with BIC lag selection from a maximum AR lag order of pmax + 1.
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Results I

I Of these series, we report the �ve where at least one of the nine
tests considered yields a rejection at the 0.10 level: the
dividend-price ratio (d/p), dividend yield (d/y), default return spread
(dfr), in�ation rate (inf) and the stock variance (svar).

I We also report the values of ρ̂xy and pDF for these �ve series.
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Application to monthly U.S. stock index returns,
1970:1-2017:12

Predictor ρ̂xy pDF tC t′C t∗C twC twtC BD IV X1 IV X2 Q

d/p −0.99 0.48 1.34 1.06 4.02 1.74 1.74† 0.06 1.12 1.26
d/y −0.04 0.40 1.44† 1.25† 1.42† 1.27† 1.27 0.00 1.26 1.59
dfr 0.24 0.00 1.62†† 1.10 4.36†† 1.10 1.62†† 1.51 1.64† 2.68 ††

inf −0.07 0.01 −1.01 −0.99 −0.95 −0.99 −0.99 1.26 −1.11 1.24 ††

svar −0.31 0.00 −2.99†† −2.88†† −3.42†† −2.88†† −2.99†† 12.20†† −3.03†† 9.19†† ††

Note: † and †† denote rejection at the 0.10-level and 0.05-level respectively.
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Results II

I For the strongly persistent predictors d/p and d/y, evidence of
predictability at the 0.10 level is found only by (at least one of) our
new tests.

I Indeed, for d/p, where in addition to strong persistence the value of
ρ̂xy indicates a very high degree of negative correlation, only our
preferred weighted test, twtC , delivers a rejection - exactly the sort of
environment where our simulation results showed twtC to be more
powerful than tC , t

′
C and t∗C .
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Results II

I The remaining predictors dfr, inf and svar do not appear to be
strongly persistent (in each case pDF is close to zero).

I For these series tw places virtually all weight on t′. For dfr and svar,
the low persistence prompts twt to switch into t. For dfr, this switch
turns a 0.10-level non-rejection by twC into a 0.05 level rejection by
twtC . This accords well with our simulation evidence which showed twtC
to be more powerful than twC under weak persistence.

I All of the tests show 0.05 level rejections for svar. Notably, Q
demonstrates 0.05 level rejections for all three of the non-persistent
predictors - unlike any of the other tests which manage rejections for
at most two of them. Maybe due to the bad oversize of Q with
low-persistence predictors?

I Focussing on the outcomes of twtC , we �nd that it uncovers at least
as much evidence for predictability in these series as any of its
comparator tests, notwithstanding the more questionable evidence
arising from the Q test.
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Summing up

I Develop new and easy to implement tests for predictability based on
simple to compute regression t-ratios

I A weighted test, based on the two best performing of these t tests, is
proposed designed to select the test with the better properties
depending on the strength of persistence in the putative predictor

I Weights obtained according to the p-values from a standard
Dickey-Fuller-type unit root test on the predictor

I A further modi�cation combines the weighted test with the standard
t-ratio reverting to the latter under very low persistence. Compares
very favourably with the leading tests in the literature.

I In an empirical application to US stock returns, we uncover evidence
of predictability using our new tests for a number of predictors with
signi�cantly di�ering persistence and endogeneity characteristics.
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Welch and Goyal data

Detailed description of the variables used can be found on Amit Goyal's web page.

I The dependent variable, yt, is the equity premium, EPt which corresponds to the total rate of return of
the S&P 500 index minus a short-term (risk-free) interest rate.

I DPt is the dividend price ratio - di�erence between the log of dividends and the log of prices.

I DYt is the dividend yield - di�erence between the log of dividends and the log of lagged prices.

I E/Pt is the earnings price ratio - di�erence between log of earnings and log of prices.

I DEt is the dividend payout ratio - di�erence between log of dividends and log of earnings.

I RV OLt is the equity risk premium volatility.

I SV ARt is the stock variance computed as sum of squared daily returns on the S&P 500.

I BMt is the book to market ratio - ratio of book value to market value for the Dow Jones Industrial
Average.

I NTISt is the net equity expansion - ratio of twelve-month moving sums of net issues by NYSE listed
stocks divided by the total market capitalization of NYSE stocks.

I tblt is the treasury bill rate.

I ltyt is the long-term government bond yield.

I ltrt is the long-term government bond rate of return.

I tmst is the term spread - di�erence between the long-term yield on government bonds and the treasury
bill rate.

I dfyt is the default yield spread - di�erence between BAA- and AAA- rated corporate bond yields.

I dfrt is the default return spread - di�erence between the return on long-term corporate bonds and returns
on the long-term government bonds.

I INFLt is in�ation - the consumer price index (all urban consumers).
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 2. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :



(a) ρxy = −0.95 (b) ρxy = −0.9

(c) ρxy = −0.5 (d) ρxy = 0

(e) ρxy = 0.5 (f) ρxy = 0.9

Figure 8. Finite sample size of nominal 0.05-level tests, T = 200;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 9. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 10. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 11. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 12. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 13. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 14. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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