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Abstract

We investigate the stability of predictive regression models for the U.S. equity premium.
A new approach for detecting regimes of temporary predictability is proposed using se-
quential implementations of standard (heteroskedasticity-robust) regression t-statistics for
predictability applied over relatively short time periods. Critical values for each test in
the sequence are provided using subsampling methods. Our primary focus is to develop a
real-time monitoring procedure for the emergence of predictive regimes using tests based on
end-of-sample data in the sequential procedure, although the procedure could be used for
an historical analysis of predictability. Our proposed method is robust to both the degree
of persistence and endogeneity of the regressors in the predictive regression and to certain
forms of heteroskedasticity in the shocks. We discuss how the detection procedure can be
designed such that the false positive rate is pre-set by the practitioner at the start of the
monitoring period. We use our approach to investigate for the presence of regime changes
in the predictability of the U.S. equity premium at the one-month horizon by traditional
macroeconomic and financial variables, and by binary technical analysis indicators. Our
results suggest that the one-month ahead equity premium has temporarily been predictable
(displaying so-called ‘pockets of predictability’), and that these episodes of predictability
could have been detected in real-time by practitioners using our proposed methodology.

Keywords: Predictive regression; persistence; temporary predictability; subsampling; U.S.
equity premium.
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1 Introduction

Over the last three decades a large body of empirical research has been undertaken investigating

stock return predictability. These methods have largely been based on linear predictive regression

models and have investigated a wide array of financial and macroeconomic variables as putative
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predictors for returns. Popular variables investigated for their predictive ability for returns have

included valuation ratios such as the dividend-price ratio, earnings-price ratio, book-to-market

ratio, various interest rates and interest rate spreads, and macroeconomic variables including

inflation and industrial production; see, for example, Fama (1981), Keim and Stambaugh (1986),

Campbell (1987), Campbell and Shiller (1988a,1988b), Fama and French (1988,1989) and Fama

(1990). Focusing on the in-sample predictability of U.S. stock index returns these studies find

that although the statistical evidence on predictability over short horizons is relatively weak, as

the forecasting horizon considered increases the evidence on predictability strengthens, and for

longer horizons is strongly statistically significant. Finding that stock returns are predictable

using financial ratios and macroeconomic variables does not necessarily mean that stock markets

are inefficient. It follows from linearising the standard present value model that if the dividend-

price ratio for a stock varies over time then it must forecast either the dividend growth rate or

returns to some extent; see, among others, Campbell and Shiller (1988a,1988b) and Cochrane

(2008). More generally, if a stock market is efficient then the expected excess return for the

relevant stocks might be predictable using a variety of financial and macroeconomic variables if

investors’ risk premia are time-varying and correlated with the business cycle.

Although stock return predictability is consistent with orthodox financial theory, several

authors have argued there are statistical reasons to suspect that the strong support for pre-

dictability obtained in earlier studies could be spurious. Nelson and Kim (1993) and Stambaugh

(1999) show that high persistence predictors lead to biased coefficients in predictive regressions

if the innovations driving the predictors are correlated with returns, as is known to be the case

for many of the popular macroeconomic and financial variables used as predictors. Goyal and

Welch (2003) show that the persistence of dividend-based valuation ratios increased significantly

over the typical sample periods used in empirical studies of predictability, and argue that as

a consequence out-of-sample predictions using these variables are no better than those from a

no-change strategy. When estimation and inference techniques are used that take account of

the high degree of persistence of the typical financial and macroeconomic variables used as pre-

dictors, the statistical evidence of short-horizon and long-horizon predictability is considerably

weaker and in some cases disappears completely; see, among others, Ang and Bekaert (2007),

Boudoukh, et al. (2007), Welch and Goyal (2008) and Breitung and Demetrescu (2015).

The vast majority of empirical studies of stock market predictability are based on the assump-

tion of a constant parameter predictive regression model. However, there are several reasons to

suspect that if stock returns are predictable, then it is likely to be a time-varying phenomenon;

for example, significant changes in monetary policy and financial regulations could lead to shifts

in the relationship between macroeconomic variables and the fundamental value of stocks, via

the impact of these changes on economic growth and the growth rates of earnings and dividends.

A growing body of empirical evidence is also supportive of this view. For example, Henkel et al.

(2011) find that return predictability in the stock market appears to be closely linked to eco-
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nomic recessions with dividend yield and term structure variables displaying predictive power

only during recessions. Timmermann (2008) argues that for most time periods stock returns

are not predictable but that there are ‘pockets in time’ where evidence of local predictability is

seen. In particular, if predictability exists as a result of market inefficiency rather than because

of time-varying risk premia, then rational investors will attempt to exploit its presence to earn

abnormal profits. Assuming that a large-enough proportion of the total number of investors are

rational, this behaviour will eventually cause the predictive power of the relevant predictor to

be eliminated. If a variable begins to have predictive power for stock returns then a short win-

dow of predictability might exist before investors learn about the new relationship between that

variable and returns, but it will eventually disappear; see, in particular, Paye and Timmermann

(2006) and Timmermann (2008). It therefore seems reasonable to consider the possibility that

the predictive relationship might change over time, so that over a long span of data one may

observe some, possibly relatively short, windows of time during which predictability occurs. In

such cases, standard predictability tests based on the full sample of available data will have very

low power to detect these short-lived predictive episodes.

Several empirical studies have found evidence suggesting that parameter instability is indeed

a feature of return prediction models. For example, Lettau and Ludvigsson (2001) find evidence

of instability in the predictive ability of the dividend and earnings yield in the second half of the

1990s. Goyal and Welch (2003) and Ang and Bekaert (2007) find instability in prediction models

for U.S. stock returns based on the dividend yield in the 1990s. Paye and Timmermann (2006)

undertake a comprehensive analysis of prediction model instability for international stock market

indices using the structural break tests developed by Bai and Perron (1998, 2003). They find

statistically significant evidence of structural breaks for many of the countries considered, arguing

that the “Empirical evidence of predictability is not uniform over time and is concentrated in

certain periods.” op.cit. p.312. They find some evidence of a common break for the U.S. and

U.K. in 1974-1975, and for European stock markets linked to the introduction of the European

Monetary System in 1979.

A limitation of the statistical techniques used in previous research on the instability of return

prediction models, such as orthodox regression t-tests, Chow tests, and the Bai-Perron tests

for structural breaks, is that they are not designed for use with highly persistent, endogenous

predictors. Paye and Timmermann (2006) investigate the effects of persistence and endogeneity

of the regressors on the Bai-Perron tests for structural breaks using Monte Carlo simulations.

Their simulations reveal that size distortions, whereby parameter change is falsely signalled when

none is present, can be substantial. They also show that some of the tests lack power in this

context because of the large amount of noise typically present in predictive regression models.

It should also be noted that traditional regression t-tests for predictability and structural break

tests are an ex post tool for detecting the statistical significance of regressors and structural

breaks in a historical sample of data. They are less useful in monitoring for change in real-time
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because their repeated application in prediction models can lead to size distortions (with the

probability of at least one of the tests rejecting tending to unity as the number of tests in the

sequence increases) and, as a consequence, spurious evidence of in-sample predictive ability; see

Inoue and Rossi (2005) for a detailed discussion of this problem in relation to t-tests.

Motivated by this, in this paper we develop new statistical techniques which we will use to

investigate the stability of predictive regression models for the U.S. equity premium. As puta-

tive predictors we will consider various commonly used traditional macroeconomic and financial

variables. We will also consider a range of technical analysis rules where only price or volume

data is used to predict returns. In an early paper in this direction, Brock et al. (1992) study

the ability of moving average and trading range break trading rules to predict the Dow Jones

Industrial Average (DJIA) index using daily data from 1897 through to 1986, finding strong sta-

tistically significant evidence that the trading strategies generated abnormal returns that cannot

be explained by serial correlation or conditional heteroskedasticity in the returns. Sullivan et

al. (1999) analyse a longer sample of data on the DJIA, and find that the rules employed by

Brock et al. (1992) were unable to identify profitable trading strategies for the period 1987-1996,

although there was some evidence that they managed to do so prior to this period. Hudson et al.

(1996) undertake a similar analysis to Brock et al. (1992) for UK stock index returns and find

that although the rules examined do have predictive power, their use would not enable investors

to make abnormal returns once trading transaction costs are taken into account. More recently

Neely et al. (2014) have investigated the in-sample and out-of-sample predictive power of bi-

nary technical analysis indicators in a predictive regression-based context using monthly data.

Indicators are constructed from moving-average rules, momentum rules, and on-balance volume

rules. They find that the indicators have predictive power that matches or exceeds that of the

traditional financial and macroeconomic variables used as predictors. They also show that com-

bining information from technical analysis indicators and macroeconomic variables significantly

improves equity risk premium forecasts versus using either type of predictor in isolation.

The testing methods we propose in this paper are designed with the aim of detecting relatively

short windows of predictability arising from shifts in the parameter on the predictor variable

in the predictive regression. These predictive regimes could occur at the end of the sample,

the beginning of the sample, or somewhere in between. Our detection procedures are based

around the sequential application of simple heteroskedasticity-robust regression t-statistics for

the significance of the predictor variable calculated over a subsample of fixed length m. These

statistics are then compared to critical values obtained using the subsampling-like method of

Andrews (2003) and Andrews and Kim (2006). Specifically, to take the end-of-sample case to

illustrate, suppose we have a sample of size T ∗ + m and we form a predictability test statistic

based on the last m observations. To obtain a critical value, one uses the training period t =

1, ..., T ∗, to compute the T ∗ − m + 1 test statistics that are analogous to this statistic but

calculated over the m observations that start at the jth observation (rather than the (T ∗+ 1)th
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observation, as for our end-of-sample statistic) for j = 1, ..., T ∗ − m + 1. The (1 − α) sample

quantile of these statistics is the estimated significance level-α critical value for the end-of-sample

predictability test. Computation of the critical value is relatively easy and p-values can also be

readily obtained using this method. This methodology has distinct advantages when compared

with the application of traditional regression-based tests for predictability and structural change.

In particular, it is robust to the degree of persistence and endogeneity of the predictor, making it

ideal for this type of application. We use t-statistics constructed using heteroskedasticity-robust

standard errors and, hence, our approach is also robust to certain forms of heteroskedasticity in

the model errors.

It is important to notice that an implication of the subsample critical value method being

used is that these resulting one-shot tests will be able to detect general structural change in the

slope parameter on the predictor variable (in that particular subsample, relative to the rest of

the sample) not just a change to predictability within the given subsample. This is because a

rejection will occur where the estimated slope coefficient on the predictor differs significantly

between the subsample over which the one-shot test is based and the subsamples used in the

critical value generation. This could occur either because the slope coefficient in the given

subsample was non-zero while it was zero in the rest of the data, or vice versa, or because it took

a different (non-zero) value in the given subsample from the rest of the sample. Conversely, if the

slope on the predictor was fixed throughout the sample then the one-shot test would not reject

(beyond its nominal significance level) regardless of what that fixed value was. However, and

based on the arguments above and the work of, among others, Paye and Timmermann (2006) and

Timmermann (2008), it seems reasonable to focus attention on the null model of no predictive

relationship, such that structural change where it should occur is between no predictability and

a short window of predictability. It is this interpretation that we will focus on in motivating

and outlining our procedure. In our application to U.S. equity data we first apply standard

predictability tests to the full data sets (and indeed the training periods used to obtain the

estimated critical value) to check for any evidence of sustained predictability in those samples.

Our proposed approach is based on the sequential application of these one-shot subsample

tests, commencing from a given start date, with a predictability regime being deemed to have

occurred if a certain number of consecutive rejections (at a given marginal significance level) by

these tests is observed. Where this occurs the run of rejections can be used to form estimates of

the locations of the predictive regimes. When applied using end-of-sample forms of the subsample

predictability tests this delivers a real-time monitoring procedure for the emergence of a regime of

predictive ability of a regressor for stock returns data. Because our detection procedure is based

on a sequence of subsample tests, we need to avoid the issue of spurious detections outlined in

Inoue and Rossi (2005) by controlling the false positive detection rate for the detection procedure.

We outline implementation rules, based on the number of consecutive rejections that need to be

observed before a predictive regime is signalled by the procedure, pre-set by the practitioner at
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the start of the monitoring period, which control the overall false positive detection rate of the

monitoring procedure.

The remainder of the paper is organised as follows. Section 2 outlines the time-varying pre-

dictive regression model which forms the basis for our analysis. Section 3 outlines some relevant

motivating statistical theory. Section 4 details our proposed methodology for detecting windows

of predictability and for dating any predictive regimes that are found to exist, showing how to

implement a real-time detection procedure. We discuss how to control the false positive detection

rate of the predictive regime detection procedure in practical applications. Section 5 reports the

results from a series of Monte Carlo simulations to investigate the finite sample behaviour of

our proposed predictive regime detection procedure. Section 6 presents an applied investigation

into the predictability of the one month-ahead equity premium on the S&P Composite index.

Section 7 concludes.

2 The Predictive Regime Model

We assume a relationship between the equity premium, yt, and a single predictor variable1 xt

that can be described by the following data generation process (DGP),

yt = µy +
n∑
j=1

βjdt(ej,mj)xt−1 + εy,t, t = 1, ..., T (1)

where the (putative) predictor is generated by

xt = µx + sx,t, t = 0, ..., T (2)

sx,t = ρsx,t−1 + εx,t, t = 1, ..., T (3)

with sx,0 an Op(1) random variable and where dt(ej,mj) is a dummy variable defined such that

dt(ej,mj) takes the value 1 for mj > 0 consecutive values of t, ending with t = ej. The innovation

vector εt := [εy,t, εx,t]
′, where the notation “x := y” denotes that x is defined by y, is assumed to

be a martingale difference sequence (mds). Specific conditions on εt are given below.

In the context of (1), if βj 6= 0, then so we have a predictive regime of yt by xt−1 of length

mj observations running from t = ej −mj + 1 through to t = ej. The model in (1) allows for

n ≥ 0 such predictive regimes. Consistent with the discussion in the introduction and Paye and

1To keep our presentation as transparent as possible we will outline our procedure for the case of a single
predictor. However, the approach we outline can be readily extended to the case where multiple predictors
feature in (1). Here individual subsample t-statistics, of the form discussed in section 4.1, could be considered
for each of the predictor variables, along with corresponding joint parameter heteroskedasticity-robust regression
F -statistics. Moreover, although we focus on the case where a constant term is included in both the predictive
regression model (1) and in the DGP for xt in (2), the procedure we outline would also be valid for a more general
deterministic component, such as a polynomial or broken deterministic trend, appearing in both components
provided it is included in the test regression in (7) and the t-statistic, τe,m, in (8) is commensurately re-defined.
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Timmermann (2006) and Timmermann (2008), we have in mind scenarios where such regimes

are relatively scarce and short-lived so that both the number of predictive regimes, n, and their

durations, mj, j = 1, ..., n, are taken to be small relative to the sample size, T . We assume

ej < ej+1 −mj+1 such that the regimes where predictability holds are ordered (i.e. dt(e1,m1) is

the earliest regime) and non-overlapping. Our proposed predictive regime detection procedure

will consider the quantities ej and mj which delimit the start and end dates of the predictive

regimes, and the number of regimes, n, to be unknown to the practitioner. Outside of these n

predictive regimes the slope parameter in (1) is zero and the DGP is such that yt = µy + εy,t and,

hence, yt is unpredictable (in mean) due to the mds property assumed for εy,t. Where n = 0 in

(1), yt is therefore unpredictable at all time periods.

The innovation vector εt is assumed to be a mds with finite fourth order moments and

unconditional covariance matrix given by

E(εtε
′
t) =

[
σ2
y,t rxyσy,tσx

rxyσy,tσx σ2
x

]

where |rxy| < 1. This setup allows unconditional heteroskedasticity in εy,t while keeping the

unconditional correlation between εy,t and εx,t constant at rxy. Conditional heteroskedasticity,

such as GARCH or stationary autoregressive stochastic volatility, is permitted in both εy,t and

εx,t. As regards the AR(1) process in (3), the predictive regime detection procedures we propose

in this paper are valid regardless of whether ρ = 1 (a unit root predictor) or |ρ| < 1 (a stationary

predictor). Moreover, ρ is also allowed to be T -dependent such as occurs, for example, in cases

where the predictor is strongly persistent displaying either local or moderate deviations from a

unit root; for full sample predictability tests directed at the latter, see Kostakis et al. (2015).

The AR(1) specification is not in fact critical for our analysis, and it could be generalized to

a higher order autoregressive process without affecting the validity of our proposed procedures;

indeed, more generally, εt could validly be allowed to follow a stable linear process, albeit it is

standard in the predictive regression literature to assume that εyt is serially uncorrelated.

In what follows, to facilitate our later analysis of real-time monitoring for the emergence of

predictive regimes, we make a distinction between the end of the monitoring period, which we

denote by t = E, and the notional future end of the DGP for yt, that is t = T , such that E ≤ T .

3 Background Results for Predictive Regime Detection

To motivate our approach to predictive regime detection, first suppose we have a sample of

time series observations zt, t = 1, ..., N from a stationary continuous distribution. Consider the

maximum value taken by zt over t = 1, 2, ..., N ; that is, maxt∈[1,N ] zt. The value of maxt∈[1,N ] zt

is clearly a function of the distribution of zt. But consider the location at which maxt∈[1,N ] zt
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is obtained, that is M := arg maxt∈[1,N ] zt. Then, since all possible locations are equally likely,

Pr(M = 1) = Pr(M = 2) = · · · = Pr(M = N) = 1/N , irrespective of the distribution of zt.

Hence, M has a discrete uniform distribution. If we standardize M as pM := M/N , then, for

large N, we find that pM ∼ U(0, 1), where U(0, 1) is the continuous uniform distribution on the

interval [0, 1]. Hence,

lim
N→∞

Pr(pM ∈ [0, 1− α]) = 1− α

lim
N→∞

Pr(pM ∈ [1− α, 1]) = α.

We can use the foregoing result in a slightly different form. Consider the maximum value of

zt in each of the two intervals t = 1, ..., b(1 − α)Nc and t = b(1 − α)Nc + 1, ..., N , where b·c
denotes the integer part of its argument; that is, maxt∈[1,b(1−α)Nc] zt and maxt∈[b(1−α)N+1,Nc] zt,

respectively, noting that only one of these can coincide with maxt∈[1,N ] zt. Then,

lim
N→∞

Pr

(
max

t∈[b(1−α)Nc+1,N ]
zt > max

t∈[1,b(1−α)Nc]
zt

)
= α. (4)

Note that this result follows due to the large sample uniformity of the location of the maximum,

and hence the probability that maxt∈[1,N ] zt is located in the latter interval t ∈ [b(1−α)Nc+1, N ],

i.e. that maxt∈[b(1−α)Nc+1,N ] zt > maxt∈[1,b(1−α)Nc] zt, is simply the limit ratio of the length of the

latter interval (N − b(1− α)Nc) to the total length of the two intervals together (b(1− α)Nc+

N − b(1− α)Nc = N); that is,

lim
N→∞

N − b(1− α)Nc
N

= α.

Now, instead of looking at the maximum value of zt, consider instead the maximum number

of contiguous values of zt that exceed some threshold value, c say, where we assume that c is

such that 0 < Pr(zt > c) < 1. Using 1(·) to denote the indicator function, let Rt := 1(zt > c)

and define the following measure over t = L to t = U with U ≥ L:

R(L,U) := (U − L+ 1)
U∏
t=L

Rt. (5)

Notice that when R(L,U) is non-zero, its value, U − L+ 1, represents the length of a sequence

of contiguous exceedances. The maximum length of contiguous exceedances over t = 1, ..., N

is then maxL,U∈[1,N ]R(L,U), which will depend on the distribution of zt. If, however, we

consider the location of the maximum length of contiguous exceedances, i.e. (ML,MU) :=

arg maxL,U∈[1,N ]R(L,U), this does not depend on the distribution of zt as all possible loca-

tions for the pair (ML,MU) are equally likely. Paralleling the uniform distribution arguments
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leading to (4), we find that

lim
N→∞

Pr

(
max

L,U∈[b(1−α)Nc+1,N ]
R(L,U) > max

L,U∈[1,b(1−α)Nc]
R(L,U)

)
= α. (6)

Again, the intuition is that due to the large sample uniformity of the location of the maximum

length of exceedances, the probability that maxL,U∈[1,N ]R(L,U) is located in L,U ∈ [b(1 −
α)Nc + 1, N ], i.e. that maxL,U∈[b(1−α)Nc+1,N ]R(L,U) > maxL,U∈[1,b(1−α)Nc]R(L,U), is the limit

ratio of the length of the latter interval (N −b(1−α)Nc) to the total length of the two intervals

(b(1− α)Nc+N − b(1− α)Nc = N), which is α.

We will subsequently employ the uniform probability arguments provided in the section to

control the false positive rejection rate of the predictive regime detection procedure we propose.

4 Predictive Regime Detection

4.1 Subsample Regression t-statistics

We are interested in detecting the presence of a predictive regime for the variable yt in real-time

and propose a way of doing this utilizing subsample regression t-statistics. To that end, consider

first selecting a subsample of m observations running from t = e −m + 1 to t = e, where m is

chosen by the practitioner, and run the (generic) ordinary least squares [OLS] regression,

yt = a+ bxt−1 + ut, t = e−m+ 1, ..., e. (7)

We then calculate the regression t-statistic, based around a heteroskedasticity-robust variance

estimate (see White, 1982), for the significance of xt−1 in (7); that is,

τe,m :=
b̂√
V̂ (b̂)

(8)

where

b̂ :=

∑e
t=e−m+1(xt−1 − x̄−1)(yt − ȳ)∑e

t=e−m+1(xt−1 − x̄−1)2
, V̂ (b̂) :=

∑e
t=e−m+1(xt−1 − x̄−1)2û2t

{
∑e

t=e−m+1(xt−1 − x̄−1)2}2

ût := (yt − ȳ)− b̂(xt−1 − x̄−1)

ȳ := m−1
e∑

t=e−m+1

yt, x̄−1 := m−1
e∑

t=e−m+1

xt−1.

Provided an appropriate critical value is available to the practitioner, a test for a predictive

regime holding between yt and xt−1 for the given subsample t = e−m+1, ..., e can then be based

on τe,m. As a particular example, suppose we have data available for t = 1, ..., T ∗+m; a test for
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the presence of a predictive regime in the last m available sample observations would therefore

be based on the statistic τT ∗+m,m. Standard regime detection tests, such as those outlined in

Paye and Timmermann (2006) use asymptotic distribution theory to approximate the test’s

critical value but this approximation is based on the assumption that the sample window m used

in constructing the test statistic is a positive fraction of the sample size, T . This assumption

is clearly not consistent with our aim which is to detect predictive regimes of short duration.

Moreover, even if we were to assume m to be a function of the sample size T , the resulting

limiting distribution of τe,m will depend on nuisance parameters present in the DGP in (1)-(3)

including the degree of persistence of the predictor variable, xt, and the correlation, rxy, between

εy,t and εx,t. Consequently, without knowledge of these nuisance parameters, valid asymptotic

critical values for the test could not be obtained in any case.

An alternative approach that we will use in this paper is based on the subsampling method

for obtaining critical values developed in Andrews (2003) and Andrews and Kim (2006). Here the

asymptotic justification for the procedure is based on the scenario where T →∞ but crucially,

and as in our setting, the sample window, m, remains finite. Applied to the τe,m statistic, the

Andrews-type approach, which we will outline in detail in section 4.2 below, involves comparing

τe,m with critical values obtained by subsampling from some subset (this data subset is referred

to as a training period in the end-of-sample testing example based on τT ∗+m,m given above) of

those sample data not used in calculating τe,m. This approach delivers tests which, by design,

are robust to the nuisance parameters in (1)-(3). Heuristically, this holds because the estimated

critical values are obtained from an empirical distribution function that, for large T , has the

same functional dependence on those nuisance parameters as does the distribution function of

τe,m itself. Importantly, if no predictability holds throughout the data subset used to estimate

these critical values, then the resulting test based on τe,m and these estimated critical values is

a valid test for the null hypothesis of no predictability against the alternative of predictability,

in the context of the subsample of m observations running from t = e−m+ 1 to t = e.

The discussion above relates to a one-shot predictability test based on τe,m. However, our goal

is to develop a real-time monitoring procedure for the emergence of an end-of-sample predictive

regime. To that end, we will construct a sequence of τe,m statistics, of the form given in (8),

calculated for each possible end-of-subsample date e = T ∗ + m, ..., E, recalling that E denotes

the end of the monitoring period, a parameter set by the practitioner. The predictive regime

detection procedure we propose will be based on a subset of the resulting sequence of statistics.

4.2 The Detection Procedure

The first step of our predictive regime detection approach is to determine a critical value to use

in connection with the sequence of τe,m, e = T ∗ + m, ..., E, statistics. These will be estimated

from an initial training period in which it will be assumed that no predictive regime occurs;
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further discussion relating to where this assumption might be violated is given at the end of

section 4.3. To that end, suppose there is a T ∗ such that T ∗ := bλT c for some λ ∈ (0, 1) where

it holds that T ∗ < e1−m1 + 1. We consider t = 1, ..., T ∗ as the training period where predictive

regimes are assumed absent.

As discussed in section 4.1, using the sequence of τe,m statistics that make use of data within

this training period, i.e. τe,m for e = m+1, ..., T ∗, we will follow the approach of Andrews (2003)

and Andrews and Kim (2006) and calculate an empirical critical value for a significance level π,

say. We denote this empirical critical value by cvπ. Assuming we want to perform upper one-tail

testing (so that a rejection indicates a significant positive predictive relationship between yt and

xt−1), then cvπ is defined such that cvπ := τ(b(1−π)(T ∗−m)c) where τ(j), j = 1, ..., T ∗ −m are the

ascending order statistics of τe,m, e = m+1, ..., T ∗ (that is, τ(j+1) > τ(j) for j = 1, ..., T ∗−m−1).2

Under the conditions placed on (1), it follows from Andrews (2003) and Andrews and Kim (2006)

that cvπ is a consistent estimate for the true π significance level critical value as T →∞.

Next, we start our monitoring period by calculating the first statistic τe,m which does not

utilize any of the training period data; that is, τT ∗+m,m (which uses data from t = T ∗ + 1 to

t = T ∗ + m), and compare this with the training period critical value cvπ. Then, we move

forwards one period, calculating τT ∗+m+1,m, again comparing the statistic with cvπ. We proceed

sequentially in this manner, comparing τe,m, e = T ∗ + m,T ∗ + m + 1, ..., with cvπ as we move

forwards in time, and using Re = 1(τe,m > cvπ) to record whether or not each test statistic in

the sequences exceeds the critical value. Note that when βj = 0 for all j in (1), then, for large

T ∗, the τe,m will be stationary across e = {m+1, ..., T ∗}∪{T ∗+m,T ∗+m+1, ...} (the m length

gap can effectively be ignored), so the critical value cvπ calculated from τe,m for e = m+ 1, ..., T ∗

is appropriate for τe,m for e = T ∗ +m,T ∗ +m+ 1, ... also.

To reliably detect a predictive regime, such that the false positive detection rate [FPR] of the

procedure can be properly controlled, we do not simply take a single exceedance Re = 1 to be

sufficient evidence for an identified predictive regime. Rather we consider identifying a predictive

regime when there is a contiguous sequence of exceedances that exceed some minimum length

requirement. Specifically, for U ≥ L, let

R(L,U) := (U − L+ 1)
U∏
e=L

Re

so that, when R(L,U) is non-zero, it gives the length of contiguous exceedances between e = L

and e = U ; cf. (5). We then determine that a predictive regime is present when R(L,U) > m∗

for some choice of m∗ > 1.

Notice that, as a result, the first time period at which it would be possible to detect a

predictive regime is t = T ∗+m+m∗, because this is the first occasion where R(L,U) can exceed

2The same general approach can also be used for lower one-tail or two-tail testing.
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m∗ (here R(T ∗ + m,T ∗ + m + m∗) = (m∗ + 1)
∏T ∗+m+m∗

e=T ∗+m Re). We then continue to apply this

detection procedure as we move forwards in time, up to our end-of-monitoring date, t = E.

Clearly, to be able to detect a predictive regime, it must be true that E ≥ T ∗ + m + m∗, and,

for a sufficiently large E, it is clearly possible for our procedure to detect multiple predictive

regimes within the time span T ∗ + m, ..., E. In the next subsection, based on the arguments of

section 3, we suggest a data-based method to choose m∗ and analyse the impact of E on the

overall FPR of the procedure.

4.3 Choice of m∗ and the False Positive Detection Rate

We now consider issues pertaining to the FPR of our proposed procedure; that is, the probability

of incorrectly identifying at least one predictive regime when in fact none exists and where the

monitoring has been run out to E. Adapting the result of (6) to a statement regarding the

location of the longest contiguous sequence of exceedances Re, we can write

lim
T ∗,E→∞

Pr

(
max

L,U∈[T ∗+m,E]
R(L,U) > max

L,U∈[m+1,T ∗]
R(L,U)

)
= α (9)

provided, in the notation of (6), that

b(1− α)Nc = T ∗ −m (10)

N − b(1− α)Nc = E − (T ∗ +m) + 1 (11)

with, trivially, N = T ∗ −m+E − (T ∗ +m) + 1 = E − 2m+ 1. We note that (9) is a statement

regarding the limiting probability of the longest contiguous sequence of exceedances lying in the

monitoring period as opposed to the training period. For large N (and, hence, large T ∗ and E),

(10)-(11) imply that α/(1 − α) = (E − (T ∗ + m) + 1)/(T ∗ −m). This can be solved to give a

finite sample approximation for α as follows

α =
E − T ∗ −m+ 1

E − 2m+ 1
. (12)

The practical implication of this result is that if we set m∗ to be the longest contiguous sequence

of exceedances in the training period; that is, we set

m∗ = m̂∗ := max
L,U∈[m+1,T ∗]

R(L,U) (13)

then, in large samples, the FPR of the resulting monitoring procedure run up to E is given by

α. Here, α is a monotonically increasing function of E since

∂α

∂E
=

T ∗ −m
(E − 2m+ 1)2

> 0.
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Hence, other things being equal, the longer the monitoring period, the greater the likelihood of

spuriously finding a predictive regime. For any given monitoring horizon E, the result in (12)

delivers an approximation to the empirical FPR that would be obtained in practice when setting

m∗ = m̂∗. By way of illustration, suppose we set T ∗ = 400 and m = 30, Figure 1 shows this

approximation to the FPR as a function of E.
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Figure 1. FPR as a function of E

If, for example, we wish to monitor out to E = 680, then the FPR will be about 0.40. We can

also rearrange (12) as

E =
T ∗ +m− 1− α(2m− 1)

1− α
(14)

which is useful if we wish to know the maximum monitoring horizon E such that the FPR is

controlled at α. For the current illustration, if we wish to control this rate to α = 0.20, then

(14) shows us that E should be no more than about 520 (which is also apparent from Figure 1).

Notice that none of the foregoing material in this subsection appears to relate directly to

the choice of significance level π at which the individual τe,m tests calculated in the monitoring

sequence are run. In fact, the dependence is implicit because π influences the lengths of the

contiguous rejections: the larger is π, the smaller is cvπ and the longer we would expect the

sequences of contiguous rejections to be. This, in turn, will influence the value that m̂∗ in (13)

takes.

An implication of the previous paragraph is that any sensible threshold value could in prin-

ciple be used in place of the critical value estimated from the training period. A benefit of

13



the estimated critical value approach is that where the training period contains no predictive

regimes each individual test in our monitoring sequence can be interpreted marginally as a test

for predictability in that particular subsample. Moreover, suppose, in contradistinction to our

maintained assumption so far, that one or more short duration predictive regimes in (1) are

present within the chosen training period. Although the large (in T ) sample properties of the

estimated critical value would be unaffected by this, for a given finite length training period,

if (for example) positive predictability regimes existed in the training period then so we would

expect both cvπ and m̂∗ to increase relative to the case where no predictability is present in the

training period. We might therefore anticipate some reduction in the ability of the procedure to

detect genuine predictive regimes present in the monitoring period due to the increase in m̂∗. We

will explore the impact on our proposed procedure of a predictive regime holding in the training

period as part of our Monte Carlo simulation study in section 5.

Our discussion in this section has assumed for simplicity that there is no separation between

the data period used for the training period and the data used for monitoring, with the former

spanning t = 1, ..., T ∗ and the latter starting at t = T ∗ + 1. More generally, the last time period

included in the training sample could be T ∗−k for some k > 0, thereby allowing for a separation

between the training period and the start of the monitoring period. This might be relevant in

cases where a predictability regime was thought to have occurred towards the end of the training

period, so that the training period could be redefined to exclude this regime. In this case the

right hand side of (10) becomes T ∗ −m− k (while (11) remains unchanged), so the expressions

for α and E in (12) and (14) become, respectively,

α =
E − T ∗ −m+ 1

E − 2m+ 1− k
and E =

T ∗ +m− 1− α(2m− 1 + k)

1− α
. (15)

Although not consistent with the interpretation we are placing on the DGP in (1), it is

also possible in practice that the training period could potentially contain longer periods of

predictability, including the case where predictability holds throughout the training period. In

the latter case, and as discussed in the Introduction, a test based on τe,m and the estimated

critical values from the training period is a test for structural change in the slope parameter of

the predictive regression in the subsample t = e−m+ 1, ..., e relative to its value in the training

period (this is because using the estimated critical values from the training period acts to re-

centre the t-statistic, τe,m, in (7) about the value of the slope parameter in the training period,

rather than about zero). For example, a rejection based on an upper tail critical value estimated

from the training period would indicate a statistically significant increase in the magnitude of

the slope parameter on xt−1 (and, hence, in the strength of the predictability of yt by xt−1) in

the subsample t = e − m + 1, ..., e, vis-à-vis the value of the slope parameter in the training

period. In practical applications, we recommend applying standard full-sample predictability

tests to the training period to investigate whether the assumption of no predictability holds in
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the training period and this will be done in the empirical data analysis undertaken in section 6.

4.4 Dating of Predictive Regimes

Our proposed procedure allows detection of at least one predictive regime before the end-of-

monitoring date E. To consider the possible dating of predictive regime(s) for a generic choice

of m∗, which could be m̂∗ in (13), let D denote an E× 1 vector of zeros. Then, for e = T ∗+m+

m∗, ..., E, if
∏e

k=e−m∗ Rk = 1, set De−m∗ , ..., De to 1. That is, for all end-of-window dates e that

form part of a contiguous run of at least m∗+1 exceedances Re, we set the eth element of D to one.

Now suppose that D has h consecutive 1s in positions e = j, ..., j+h−1. Since the first exceedance

is represented by Rj, which is based on data over the period j −m+ 1, ..., j, we might consider

j −m+ 1 to represent a feasible start date for the predictive regime. With Rj+h−1 representing

the final exceedance, and this being based on data over the period j −m + h, ..., j + h − 1, we

would consider j + h − 1 to represent a feasible end date for the predictive regime. By this

categorisation, then, a given predictive regime covers the contiguous set of dates j −m + 1, ...,

j + h− 1.

In some sense, this set of dates is liberal, or weak, since it is possible that the predictive

regime started after j − m + 1 and ended before j + h − 1; for example, only the later data

used in Rj may be responsible for triggering that exceedance, and only the earlier data used in

Rj+h−1 responsible for triggering that exceedance. We might therefore consider an alternative

dating approach where the predictive regime is characterised by the subset of dates for which

every time the date is present in the test data, an exceedance is obtained. This subset, which we

refer to as strong, is the contiguous set of dates j, ..., j−m+h; note that if h ≤ m−1, the strong

set will be empty. In situations where more than one predictive regime has been detected, it is

possible that weak dates associated with consecutive regimes can overlap, though this possibility

cannot arise for the strong dates.

5 Finite Sample Properties of the Monitoring Procedure

In this section Monte Carlo simulations are used to study the finite sample properties of our real-

time predictive regime monitoring procedure, employing the data-based procedure for controlling

the FPR defined in (13). In total we present the results from eight sets of simulation experiments

based on the DGP given by (1)-(3). In all of the experiments we set µy = µx = 0 (without loss

of generality) in the simulation DGP, and use negatively correlated standard normal error terms

εy,t ∼ N(0, 1), εx,t ∼ N(0, 1), with rx,y = −0.90.3 All of the simulation experiments and the

3In predictive regression models for the equity premium employing valuation ratios as predictors (e.g. the
dividend-price ratio, earnings-price ratio) the relevant error terms are strongly negatively correlated, hence our
choice of rx,y = −0.90.
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empirical application in section 6 employ the upper-tailed version of our procedure.4 In each

simulation experiment the total sample size T and the date when monitoring starts (T ∗+m) are

the same as in the empirical application T = 493 and T ∗ + m = 302, and in all cases m = 30.5

All of the experiments are undertaken using MATLAB, employing the Mersenne Twister random

number generator function and 5,000 replications.

The first set of experiments study the power of our procedure to detect a single predictive

regime as a function of β1 = {0.10, 0.20, 0.30, 0.40, 0.50, 1.00} for ρ = {0.965, 0.975, 0.985, 0.995},
setting π = 0.10.6 When β1 = 0 (so that n = 0 and, hence, there are no predictive regimes in the

data) the detection frequency obtained from the simulations is equivalent to an empirical FPR

and we also report simulation results for this case. In the first set of experiments we assume

a short monitoring period that ends at E = 328, which given the values used for T ∗ and m is

consistent with α = 0.10 (this can be verified using (12)). Therefore when β1 = 0, because we

are using the data-based m̂∗ for controlling the FPR to α the empirical FPR obtained should be

approximaely equal to 0.10. If a predictive regime does occur during the monitoring period, then

the power of our procedure to detect its presence will depend not only on how long the relevant

predictive regime continues for (m1) and its strength (measured by the magnitude of β1), but

also on when the predictive regime occurs relative to the start of monitoring. To investigate

this issue in more detail, separate results are computed for five different predictive regime start

dates: (a) t = 287 (15 observations before the start of monitoring), (b) t = 297 (5 observations

before the start of monitoring), (c) t = 302 (at the same time as the start of monitoring), (d)

t = 307 (5 observations after the start of monitoring), (e) t = 317 (15 observations after the start

of monitoring). In each case the length of the predictive regime in the DGP is set to m1 = 30.7

In empirical applications, whilst there might be a particular reason for favouring a short

monitoring period, for predictive regimes that start towards the end of a short monitoring pe-

riod the power of our procedure to detect their presence could be significantly improved if we

monitor for a longer period of time. To investigate this issue in more detail, in the second set

of experiments we repeat the first set of experiments employing the same simulation DGP and

4For the majority of the macroeconomic and financial variables and for all of the technical analysis indicators
used in the empirical application in section 6 financial theory suggests a positive relationship with the equity
premium. For those of the macroeconomic and financial variables where financial theory suggests a negative
relationship with the equity premium (e.g. interest rates) we use −xt−1 rather than xt−1 when testing for a
predictive regime so that an upper-tailed test is applicable. This is consistent with recent research on detecting
equity premium predictability using orthodox t-tests (e.g. Campbell and Thompson, 2008; Neely et al., 2014).

5Our full sample of data used for the equity premium application below is monthly and covers the period
December 1974 to December 2015 (hence T = 493), and in the application we monitor from January 2000 (hence
T ∗ + m = 302). In addition to m = 30, in the empirical application results are also computed for m = 20 and
m = 60.

6This range of values for ρ and β1 was chosen following a preliminary analysis of the data used for the empirical
application in section 6. Typically when AR(1) models are estimated for the traditional predictors used in section

6 (e.g. the valuation ratios), the fitted slope parameters lie in the range 0.965-0.998, and the majority of the β̂
values obtained from subsample predictive regressions with m = 30 lie in the range 0.10-1.00.

7Therefore in these experiments m = m1. In the third and fourth sets of experiments, discussed in more detail
below, we investigate the performance of our monitoring procedure when the values of m and m1 differ.
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predictive regime dates, but extending the monitoring period to E = 362 which is consistent with

α = 0.20. Hence the empirical FPR obtained from the simulations in this case (when β1 = 0)

should be approximately equal to 0.20.

The third set of experiments study the power of our procedure to detect a single predictive

regime as a function of its length, m1, for E = 328 and for the predictive regime dates used in the

previous experiments. The AR(1) parameter for the predictor’s DGP in (3) is set to ρ = 0.995,

β1 = {0.25, 0.50, 0.75, 1.00}, while the other parameters are set to the values used for the previous

experiments. Results are computed for m1 = {10, 15, ..., 60} in steps of 5 observations. We would

expect that increases in m1 will lead to increases in power, although the extent of the increase

will depend on the length of the monitoring period and the location of the predictive regime in

the DGP. In the fourth set of experiments we repeat the third set of experiments employing the

same DGP and predictive regime dates, but now extending the monitoring period to E = 362.

The first four sets of experiments assume no predictability over the training period. As

discussed in section 4.3, our procedure can still be used for detecting predictive regimes during the

monitoring period if predictability exists during the training period, albeit the FPR and power

of the procedure could be affected. Recall from section 4.3 that setting m∗ = m̂∗, the longest

contiguous sequence of τe,m exceedances over the training period, controls the (theoretical) FPR

of our monitoring procedure to α. If our procedure is applied to data where a regime of positive

predictability exists in the DGP during the training period, the number of contiguous right-tailed

τe,m exceedances over the training period, and therefore the value of m̂∗ used for monitoring,

are likely to be larger than the values obtained if the DGP had contained no predictability over

the training period but was otherwise identical. It follows straightforwardly in this case that the

power of our procedure to detect a predictive regime over the monitoring period will be reduced

relative to the case of no predictability over the training period. The empirical FPR might also

be affected by the presence of predictability over the training period as it is also a function of

m̂∗.

The fifth through eighth sets of experiments investigate this issue in more detail. In these

experiments we repeat the first four sets of experiments again using the DGP given by (1)-(3),

but in addition to the original predictive regime at locations (a)-(e), an earlier predictive regime

is imposed in the DGP during the relevant training periods. Specifically, the full DGP for each

set of experiments contains two predictive regimes (i.e. we set n = 2 in (1)), where the first

predictive regime is set to occur during the training period at t = bT ∗/2c, and we set m1 = 15

and β1 = 0.25 (hence the associated predictive regime in the training period continues for 15

observations). The second predictive regime mirrors the original predictive regime in the first four

sets of experiments. The length of this second regime, m2, and the strength of the predictability,

β2, are set to the same values as the relevant parameters in the first four sets of experiments (m1

and β1, respectively). Note that in the fifth through eighth sets of experiments the predictive

regime in the training period is relatively short (being half the length of the predictive regime
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in the monitoring period for first two sets of experiments). It is particularly important to assess

the finite sample performance of our procedure when there is a short predictive regime in the

training period, since short predictive regimes are more difficult to identify than long predictive

regimes. If a long predictive regime exists over the initial training period chosen by a researcher

using our procedure, then it is more likely that the researcher would be aware of its presence

(e.g. via a preliminary analysis of the data). The researcher might choose to continue monitoring

using the critical value cvπ and m̂∗ computed from the initial training period data, but take into

account the presence of the earlier predictive regime when interpreting the results obtained, or

alternatively they might choose to select a different training period before using our procedure

for monitoring; cf. the discussion in section 4.3 relating to equation (15).

As discussed in section 1, an attractive feature of our monitoring procedure is that, for suf-

ficiently large T , in addition to being robust to any degree of contemporaneous correlation of

the error terms in the DGP, it is also robust to conditional and/or unconditional heteroskedas-

ticity, and to non-Gaussian errors. To investigate how well these robustness properties hold in

finite samples, in additional experiments we repeated a selection of the simulation experiments

discussed above using the same DGPs but for a range of error distributions and heteroskedas-

ticity patterns for εy,t in (1), specifically: (i) t(10) error terms; (ii) t(5) error terms; (iii) nor-

mally distributed GARCH(1,1) error terms with GARCH parameters α0 = 0.10, α1 = 0.10,

β = 0.80; (iv) t(5) GARCH(1,1) error terms with the same GARCH parameters, and (v) t(5)

error terms with an unconditional volatility shift during the monitoring period from σy = 1

to σy = 2. In each case very similar results were obtained to the results from the original

experiments reported here. In the interest of brevity the detailed results from these additional

experiments are therefore relegated to an on-line supplementary appendix to this paper available

from www.sites.google.com/view/pr-supplemental

5.1 Results

The results from the first set of experiments are given in Figure 2. Recall that the end of the

monitoring period for this set of experiments is chosen using (11) to be consistent with a FPR

of α = 0.10. Therefore when β1 = 0 we would expect the predictive regime detection frequency

computed from our simulations to be close to 0.10. It can be seen that each of the curves indeed

starts from approximately 0.10 consistent with the theoretical results in section 4.3. For cases

(a)-(c) when the predictive regime starts before or at the same time as the start of monitoring,

power rises rapidly with β1. For cases (d) and (e) when the predictive regime starts after the

start of monitoring, a higher proportion of the subsamples used when computing τe,m will be

data from the period of the DGP when no predictability exists. Furthermore, in these two cases

monitoring ends shortly after the predictive regime starts (e.g. for case (e), monitoring ends 11

observations after the predictive regime starts). Therefore, as expected, power rises with β1 at
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a lower rate than for cases (a)-(c) and ultimately flattens out at a lower value.

The results from the second set of experiments are given in Figure 3. As expected, when

the monitoring period is extended to E = 361 the predictive regime detection frequency as a

function of β1 increases. Indeed the results are now virtually identical for each of the predictive

regime start dates considered here and all of the curves flatten out quickly as β1 increases.

This reflects the fact that because of the longer monitoring period, each set of sequential τe,m

statistics now includes a run of statistics computed using subsamples where a high proportion of

each subsample is data from when predictability exists in the DGP. When β1 = 0 the empirical

FPR increases to approximately 0.20, again as expected.

Consider next the results from the third set of experiments given in Figure 4. As expected,

power initially increases with m1. Note that for case (a) the curve flattens out at between 0.85

and 0.95 (depending on the value of β1) when m1 = 40. For cases (b)-(e) the curve flattens out

earlier and at a lower value. This pattern reflects the fact that as we move from cases (a) to (e),

because the predictive regime starts progressively later in the sample, the value of m1 such that

the end of the predictive regime lies beyond the end of the monitoring period E gets smaller.

Hence for case (e), the curve is relatively flat for m1 > 10 because the monitoring period ends 11

observations after the start of the predictive regime in the DGP. Therefore, in this case, further

increases in m1 above 10 do not lead to any further increase in the power of our procedure to

detect the predictability regime.

For the fourth set of experiments the results given in Figure 5 show that power as function of

m1 is now very similar, irrespective of when the predictive regime occurs. With the monitoring

period finishing later in the sample there are sufficient observations in the monitoring period for

increases in m1 to translate through to increases in power before the monitoring period ends.

In all of the cases (a)-(e) the curve indicates that our procedure has a very high probability of

successfully detecting a predictive regime when m1 ≥ 40.

The results for the fifth through eighth set of experiments are given in Figures 6-9. We find

that, as expected, due to the presence of a predictive regime during the training period, in each of

the individual experiments the longest contiguous sequence of τe,m exceedances over the training

period, and therefore the value of m̂∗ selected for monitoring, is on average slightly larger than

the corresponding value in the first four sets of experiments. As a result, the power curves

are generally lower in these experiments than the corresponding curves in the first four sets of

experiments. When β2 = 0 and E = 328 (consistent with α = 0.10), the detection frequency

in Figure 6 is approximately 0.05. When β2 = 0 and E = 362 (consistent with α = 0.20),

the detection frequency in Figure 7 is approximately 0.10. Similarly, it can be seen in Figures

6 and 7 that for β2 > 0, the curves are approximately 0.05-0.10 lower than the corresponding

curves in Figures 2 and 3. The curves in Figure 6 for E = 328 are sensitive to where the second

predictive regime is located. However it can be seen in Figure 7 that as in Figure 3, extending

the monitoring period to E = 362 reduces the sensitivity of the curves to the exact location of
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the predictive regime.

We find in Figure 8 that power as a function of the length of the predictive regime (here m2)

also falls by approximately 0.05-0.10 compared to the original results in Figure 4. The curves

in Figure 9 are also approximately 0.05-0.10 lower for smaller values of m2 than the curves in

Figure 5. Notice, however, that for larger values of m2 (e.g. m2 ≥ 50) and larger values of β2

there is virtually no loss of power relative to the original results and as before power is close

to unity. Intuitively, when the predictive regime in the monitoring period lasts for a relatively

long period of time compared with the predictive regime within the training period, and the

predictability is relatively strong, it dominates the negative impact on power of the increase in

m̂∗ caused by the predictive regime within the training period.

Overall, the results obtained from these simulation experiments illustrate that our method

for controlling the FPR associated with our procedure works very well for the type of sample

sizes and subsample sizes that might be used in empirical applications. The simulation results

show that our procedure has very good power for detecting a predictive regime that occurs

shortly before or around the same time as the start of monitoring, even when the monitoring

period is short. Naturally, for predictive regimes that start towards the end of a short monitoring

period the power of our procedure will be lower. Increasing the monitoring period increases the

power of our procedure, ceteris paribus, enabling these predictive regimes to be better detected,

albeit subject to an increased FPR. The power of our procedure also increases with the length

of the predictive regime, up to an upper threshold that depends on the location of the predictive

regime relative to the end of the monitoring period. The simulation results from the fifth through

eighth sets of experiments show that our procedure is relatively robust to the presence of a short

period of predictability within the training period. Although the power of the procedure falls in

this case compared with the results obtained when there is no predictability within the training

period, the impact is relatively small for the examples considered here and the results obtained

suggest that our procedure should still be useful for detecting predictive regimes in empirical

applications in cases where this situation arises.

6 Empirical Application

6.1 Data and Preliminary Analysis

The dataset used for the empirical application of our monitoring procedure consists of monthly

observations on the equity premium for the S&P Composite index calculated using CRSP’s

month-end values and on 20 different predictors for the period 1974:12-2015:12 (T = 493). We

define the equity premium as in Goyal and Welch (2008) and Neely et al. (2014) as the log return

on the value-weighted CRSP stock market index minus the log return on the risk-free Treasury

bill: yt = log(1 + Rm,t)− log(1 + Rf,t) where Rm,t is the CRSP return and Rf,t is the Treasury
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bill return. Ten of the predictors are traditional macroeconomic and financial variables (MFVs)

and ten are binary technical analysis indicators (TAIs) also used by Neely et al. (2014) in their

analysis of equity premium predictability. The TAIs used are four moving average indicators

(MAIs), two momentum indicators (MOIs), and four on-balance volume (OBV) indicators. The

four moving-average rule indicators (MAIs,l,t) are,

MAIs,l,t :=

1, if MAs,t ≥MAl,t, indicating a buy signal

0, otherwise,

where MAj,t := (1/j)
j−1∑
i=0

Pt−i for j = {s, l} and s = {1, 2}, l = {9, 12} and where Pt is the level

of the S&P Composite index. The two l-period momentum rule indicators (MOIl,t) are,

MOIl,t :=

1, if Pt ≥ Pt−l, indicating a buy signal

0, otherwise,

where l = {9, 12}. The four on-balance volume rule indicators (OBVs,l,t) are,

OBVs,l,t :=

1, if MAOBVs,t ≥MAOBVl,t , indicating a buy signal

0, otherwise,

where MAOBVj,t := (1/j)
j−1∑
i=0

obvt−i for j = {s, l} and s = {1, 2}, l = {9, 12}, and, obvt :=

t∑
k=1

V OLkDk, where V OLk is trading volume for the S&P Composite index in period k and Dk

is a binary variable,

Dt :=

1, if Pt ≥ Pt−1

−1, otherwise.

The data used to construct the equity premium and the predictors are taken from the updated

monthly data set on Amit Goyal’s website (www.hec.unil.ch/agoyal/) which is an extended

version of the data set used by Welch and Goyal (2008). The traditional MFVs are in log form

(as in Goyal and Welch, 2008; Neely et al., 2014) and each of the predictors is lagged one period.

A full list of the predictors is given in Table 1. Graphs of the excess returns and the MFVs are

given in Figures 10(a)-10(k). A graph of the S&P Composite index and the TAIs are given in

Figure 11 (note that here the TAI’s and index are scaled to fit on the same graph).

We begin with a preliminary analysis of our data set using some popular orthodox methods

for detecting predictability. Table 2 reports, for each predictor variable considered, the estimated

slope parameter (β̂), a right-tailed Newey-West t-test of significance (tNW ) and the standard and

adjusted R2 values for orthodox bivariate regression models applied to the full sample of data
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using OLS for parameter estimation. For both the MFVs and the TAIs, consistent with many

of the previous empirical studies discussed in section 1 very little evidence of predictability is

provided by the tNW tests run at conventional significance levels and in all cases the R2 values

are under 1%. It is important to recognize that although popular in studies of equity premium

predictability, orthodox t-tests (including tNW ) can be misleading in this case because of the

highly persistent lagged regressors used (see again the discussion in Section 1). Therefore also

reported in Table 2 is the IVcomb test of Breitung and Demetrescu (2015). The asymptotic null

distribution of this test statistic is standard normal, such that the test is valid, irrespective of

the persistence of the predictor and any heteroskedasticity present in the errors. As discussed

in Remark 4 of Breitung and Demetrescu (2015,p.364), the IVcomb test can only be validly

implemented as a two-tailed test, even where the sign of β under predictability is known a

priori. For the MVFs there is no statistically significant evidence of predictability from IVcomb

at conventional significance levels, and only a single rejection at the 10% significance level for

the TAIs.8

Recall that in outlining our monitoring procedure in section 4 we assumed in generating

the empirical critical value, cvπ, that there was no predictability over the training periods.

To assess how this assumption sits with our data sets we apply the same methods used for

obtaining the full sample results in Table 2 to the training periods employed in the monitoring

application below. Although we present the results for all of the methods used in Table 2, to

assess the presence of predictability in these training periods we focus on the IVcomb test. For the

monitoring application below, our initial choice of training periods is 12/74-05/98 (for m = 20),

12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60). These are the implied training periods

given by T ∗ = 302 − m, where observation t = 302 is the date at which monitoring starts in

the application below, 01/00. If there is statistically significant evidence of predictability for

an initial choice of training period, but this is thought to be due to a period of predictability

towards the end of that training period, then we recommend ending the training period at an

earlier date so as to reduce the likelihood it contains predictability. Thus, the final training

periods employed when monitoring could finish earlier than the initial choice of training period;

see the discussion in section 4.3 relating to equation (15).9

Our preliminary analysis of the data over the implied training periods reveals that for the

two interest rate series stt−1 and ltt−1, and for the bond yield spread dspt−1, there is statistically

significant evidence of predictability at conventional significance levels from IVcomb for one or

8Financial theory suggests negative predictive power for stt−1, ltt−1, ntist−1 and inft−1. We therefore multiply
each of these predictors by -1 so that a right-sided test (excepting the IVcomb test which, as discussed above, is
implemented as a two-tailed test) is appropriate for detecting predictability. See footnote 4 for further details.

9If predictability is present during the training period, as the simulations in Section 5 demonstrate, our
procedure can still be useful for detecting positive predictability over the monitoring period. Note that if negative
predictability exists over the training period and a predictability regime change is detected using the upper-tailed
version of our procedure, we cannot conclude that the change is to a period of positive predictability without
further analysis, because it could be due to a change to a period of no predictability.
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more values of m. Furthermore, the rejections obtained do not appear to be driven by pre-

dictability at the end of these implied samples. Therefore, in the monitoring application below

we continue to use the implied training periods for these three predictors despite the rejections

from IVcomb. Statistically significant evidence of predictability from IVcomb is also obtained for

ntist−1, for all values of m. In this case, we find that predictability is concentrated in the data

from 01/92 through to the end of the training periods. Hence, for this predictor and for all values

of m, we end the relevant training periods at 12/91 in the monitoring application below. For

all of the other MFV and TAI predictors no statistically significant evidence of predictability is

found from IVcomb using the implied training periods. The full set of results from the preliminary

analysis of the data over the training samples (using the adjusted training sample for ntist−1)

are given in Table 3 and Table 4 for the MFVs and TAIs respectively. Note from Table 3 that

there is also evidence of predictability for inft−1 from tNW for the training periods associated

with m = {20, 30}. However, this variable is a highly persistent process and so tNW is not an

appropriate test to use. Instead IVcomb should be used, and doing so reveals no statistically

significant evidence of predictability at the 10% level.

6.2 Monitoring Results

6.2.1 Monitoring Results: Macroeconomic and Financial Variables

We assume that a practitioner applies our real-time monitoring procedure for the presence of

predictive regimes from 01/00 (thus in all cases T ∗ +m = 302). Results are presented assuming

that the monitoring continues through to the final observation in the data set, 12/15. In real-

world applications it is not envisaged that our procedure would be used for continuous monitoring

over anything like such a long period, but it is helpful to present the results through to 12/15

to illustrate the relationship between the length of the monitoring period and the FPR. Results

are computed for m = {20, 30, 60}, for both 10% and 5% level estimated critical values, i.e. cvπ

for π = {0.10, 0.05}.
For each predictor and value of m considered, the value of m̂∗ of (13) (the longest contiguous

sequence of exceedances in the training period) and the number of predictive regimes detected

are given in Table 5. For all of the predictors and values of m in Table 5 where one or more

regimes are detected using the 10% level critical values (π = 0.10), graphs of the subsample τe,m

values along with the relevant critical values are given in Figure 12. For presentation purposes we

do not display τe,m over the entire training period and instead start the horizontal axis five years

before the end of each training period. Also indicated on these graphs are the end of the training

period T ∗, the date when monitoring starts T ∗ +m, the date of the first significant rejection for

the i-th predictive regime ji, the date at which the i-th predictive is detected ji +m∗, the FPR

as a function of E (computed using (12)), the weak set of predictive regime dates and, where

relevant, the strong set of predictive regime dates. Observe from section 4.4 that if more than
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one predictive regime is detected it is possible that the weak dates associated with consecutive

predictive regimes can overlap, although no such possibility can arise for the strong dates. Notice

also that if a predictive regime does exist for the data being examined and is detected by our

procedure, but the contiguous rejections continue for a relatively short period of time, then the

strong set of dates will typically be empty.

Neely et al. (2014) investigate differences in predictability between macroeconomic recession

and expansion periods by computing separate R2 statistics for predictive regression models using

the NBER indicator of recessions and expansions to partition the relevant data. They find that

for both the MFVs and TAIs predictability is substantially higher over recessions than over

expansions. In the light of these findings it is interesting to compare the subsample τe,m values

over the monitoring period with the NBER indicator to see if our procedure finds a similar

pattern of support for predictability over the business cycle. Hence, the NBER indicator is also

plotted in Figure 12. There are two US recessions over the monitoring period 01/00-12/15: one

short recession in early 2001 (specifically, March 2001-November 2001), and one major recession

associated with the global financial crisis (December 2007-June 2009).

It can be seen in the first half of Table 5 that, as expected, the largest number of contiguous

rejections over the training period for each predictor, m̂∗, is sensitive to the value of π used (the

test statistic significance level), being larger for π = 0.10 than for π = 0.05. The second half of

Table 5 shows that in total, either one, two or three predictive regimes are detected for six of

the ten MFVs when π = 0.10 and for five of the MFVs when π = 0.05. Note that the number

of predictive regimes detected varies depending on the predictor and the value of m used when

computing τe,m. For ept−1 and ltt−1, one or more predictive regimes are detected for all values

of m considered. For bmt−1, a single predictive regime is detected when m = 20 and m = 60,

while for dyt−1 and dpt−1 two or three predictive regimes are detected when m = 60 (but for

these predictors no regimes are detected when m = 20 or m = 30). For dspt−1 a single predictive

regime is detected only when m = 20.

Consider next the graphical results for the MFVs given in Figure 12 that correspond to

the results in Table 5. Figure 12(a) shows that for dyt−1, the τe,m test first rejects at 06/01,

and further contiguous rejections confirm that a predictive regime appears to have occurred in

02/02 with the associated weak set of dates given by 07/96-05/02. This first predictive regime

is consistent with the period of the dot-com bubble, being detected towards the end of the

boom with the associated predictive regime ending shortly after the crash. As the monitoring

period continues a further rejection occurs in 03/05, with confirmation of a second predictive

regime in 11/05. The weak set of dates in this case are 04/00-02/06 which therefore overlap

with the weak set of dates for the first predictive regime. The FPR associated with the first

predictive regime in this case is approximately 0.12. Because it occurs later in the monitoring

period the FPR associated with the second predictive regime is higher, being approximately

0.28. As expected, the sequential τe,m values in Figure 12(b) are similar to those obtained for
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dyt−1 in Figure 12(a), although for dpt−1 three predictive regimes are detected. The first and

second regimes cover approximately the same sub-periods as the two regimes detected when

dyt−1 is used as a predictor. The third predictive regime in this case occurs much later in the

monitoring period, with the initial rejection in 02/14 and confirmation of a predictive regime

in 01/15. According to the weak sets of dates for each predictive regime, in total dpt−1 had

predictive power for the equity premium over the majority of the monitoring period. Notice that

the breakdown of predictability during the monitoring period over 03/06-02/09 correlates with

the declining equity premium that occurred as a consequence of the global financial crisis (see

Figure 10(a) for a graph of the equity premium over this period). According to the weak set of

dates our results suggest that although the predictive relationship between dpt−1 and the equity

premium was not present at the height of the global financial crisis, it reappeared again in early

2009.

For ept−1, recall from Table 4 that when m = 20 a single predictive regime is detected and

Figure 12(c) shows that this occurs in 02/04. The associated FPR is approximately 0.16 and the

weak set of dates spans the period 04/02-02/04. Therefore in this case the identified predictive

regime does not continue beyond the point at which our procedure detects its presence. Figure

12(d) shows that when m = 30 the first predictive regime is detected in 01/04, the second in

03/08, and the third in 09/15. Similar to the results for m = 20, in this case the first predictive

regime ends two months after its detection, while the second and third predictive regimes end

immediately following their detection. When m = 60 a single predictive regime is detected in

12/04 and the weak set of dates are 09/98-06/06. The results for bmt−1 in Figure 12(f) (m = 20)

and Figure 12(g) (m = 60) are similar to the results for dpt−1 in the sense that in both cases

the predictive regime is detected early in the monitoring period around the time of the dot-com

bubble, and the predictive regime ends one month later.

For ltt−1 with m = 20 Figure 12(h) shows that the single predictive regime referred to in

Table 4 is detected in 09/03 and the weak predictive regime dates are 04/01-03/04. In Figure

12(i) for ltt−1 with m = 30 similar results are obtained. In Figure 12(j) for ltt−1 with m = 60 two

predictive regimes are detected, the first in 08/05 and the second in 11/12. Recall from the results

of our preliminary analysis of the data over the training periods reported in Table 3 that for this

predictor, statistically significant evidence of predictability is detected during all three training

periods by the IVcomb test statistic. Thus, the monitoring results for this predictor illustrates

the power of our procedure to detect changes in predictability regimes over a monitoring period

when predictability also exists during the relevant training period. In Figure 12(k) for dspt−1

with m = 20 a single predictive regime is detected in 12/12 and the weak set of dates in this

case cover the period 09/10-01/13. Interestingly, this period is one in which the Federal Reserve

was operating a policy of quantitative easing. Our results suggest that this may have influenced

the predictive relationship between the yield spread and the equity premium at this time.

We can observe that in nearly all of the results obtained for the MFVs, the contiguous run of
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τe,m rejections associated with each predictive regime ends shortly after the regime is detected. A

consequence of this is that the strong set of dates for each predictor is empty. Furthermore, from

a practical perspective this is an important result because it suggests that although investors

using our procedure in real-time would have been able to detect predictability in these cases,

there would have been very little time after the point of detection to exploit the predictability

before it no longer existed, at least according to the results from our dating procedure. Paye

and Timmermann (2006) and Timmermann (2008) argue that if predictability reflects market

inefficiencies then it is only ever likely to be a short-lived phenomenon because when it exists,

investors will quickly allocate capital to exploit its presence. Our finding of short pockets of

predictability that end quickly after being detected is entirely consistent with this view.

Consider now the sequential τe,m values in these graphs relative to the NBER indicator of

recessions and expansions. Interestingly it can be seen that in some cases there is evidence

suggesting that, consistent with the findings in Neely et al. (2014), predictability is stronger

during recessions than during expansions, but it is not a pattern obtained for all of the predictors.

Consider for example the graphs for ept−1 in Figure 12(c)-12(e). The test statistic τe,m peaks

during both the 2001 and 2008-2009 recessions for all three values of m. However in Figures

12(h)-12(j) for ltt−1 the test statistics falls during or at the start of both recessions. For dyt−1

and dpt−1 in Figures 12(a) and 12(b) the test statistic τe,m peaks during the first recession but

reaches a minimum during the 2008-2009 recession.10

6.2.2 Monitoring Results: Technical Analysis Indicators

Table 6 shows the value of m̂∗ of (13) for each of the TAIs and the number of predictive regimes

detected by our procedure. Whilst the m̂∗ values reported in the first half of Table 6 are broadly

similar to those obtained for the MFVs in Table 5, on average they are slightly higher for the

TAIs. It can be seen in the second half of Table 6 that for all of the TAIs either one, two,

or three predictive regimes are detected for at least one of the values of m considered here.

Interestingly, and consistent with the findings in Neely et al. (2014), we therefore find stronger

evidence of predictability for the TAIs than for the MFVs. Notice that the TAI predictors are

0-1 dummy variables that will often take the same value for several consecutive observations,

and consequently the subsample τe,m values can be undefined when the TAI does not change over

the subsample. If τe,m is undefined during the monitoring period it simply means that at the

relevant observation when this occurs the test statistic is uninformative about the presence of

predictability, but the τe,m values that are defined can still be used for monitoring. However, a

large number of undefined test statistics in the training period could have a detrimental impact on

the finite sample performance of the procedure. For completeness, the results form = {20, 30} are

10We note that Neely et al. (2014) study a longer sample of the data than the sample used here that ends
earlier (12/50-12/11) and their empirical work is fundamentally different to ours, being an ex post analysis of
predictability (in-sample and out-of-sample) rather than a real-time monitoring application.
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reported in Table 6, although for some of the TAIs undefined test statistics occur quite frequently

over the training period with these values of m. In practice, we recommend using m ≥ 60

when using our procedure with these particular TAIs to minimize the number of undefined test

statistics over the training period. Alternatively, for a given value of m, reducing the value of l

when constructing the TAIs will result in fewer undefined test statistics. In the application here

we report results for l = {9, 12} to be consistent with the regression-based analysis of TAIs in

Neely et al. (2014), even though for some of the MOIs and OBV indicators with m = 60 and

these values of l, τe,m is occasionally undefined over the training and/or monitoring period. For

the MAIs with l = {9, 12} and m = 60 there are no undefined test statistics.

For the TAIs where one or more predictive regimes are detected using the 10% level critical

values (π = 0.10), graphs of the sequences of subsample τe,m values along with the relevant

critical values are given in Figure 13. For brevity, the graphs are presented for m = 60 and

s = 1 only.11 Figure 13(a) shows that for MAI1,9,t−1, the first predictive regime is detected in

06/04 and the second in 03/09, with FPRs of approximately 0.23 and 0.38, respectively. The

first predictive regime is correlated with the dot-com bubble (although it is not detected until

after the crash) and the second predictive regime is correlated with the global financial crisis.

The weak set of dates for the predictive regimes are 10/98-02/06 and 07/03-08/13. Therefore

the two identified predictive regimes are overlapping in this case. Notice that for the second

predictive regime in this case the strong set of dates is not empty, and spans the period 06/08-

09/08. Interestingly, for both predictive regimes the contiguous rejections continue for much

longer after the predictive regimes are first detected than we found for the MFVs. Specifically,

for the first predictive regime the contiguous rejections continue for 20 months. For the second

predictive regime the contiguous rejections continue for over four years following the initial

detection. Clearly for this TAI, the pockets of predictability which our procedure detects are

considerably longer than for the MFVs. If the predictive regimes detected for the MFVs and

TAIs considered here reflect market inefficiencies, then this finding suggests that investors were

slower to exploit the inefficiencies for this TAI than for the MFVs, allowing the predictability

to persist for a longer period. The results for MAI1,12,t−1 in Figure 13(b) show that similar to

MAI1,9,t−1, two predictive regimes are detected in 04/04 and 03/09 respectively. However a short

predictive regime is also detected earlier in the monitoring period when MAI1,12,t−1 is used as a

predictor. Specifically, for this regime the τe,m test statistic first rejects at 12/01 and a predictive

regime is confirmed at 09/02. Hence this first predictive regime appears to be correlated with

the dot-com bubble and crash.

The results for MOI9,t−1 and MOI12,t−1 in Figure 13(c) and 13(d) are similar to the results

for the MAIs, in the sense that the first predictive regime identified is again correlated with

the dot-com bubble, the second with the global financial crisis, and the contiguous rejections

continue for a longer period of time after the initial predictive regimes are first detected than we

11Very similar results are obtained when s = 2.
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found for the MFVs. For both of these predictors the strong set of dates for the first predictive

regime is not empty. Because the first predictive regime is detected earlier in the monitoring

period for the MOIs than for the MAIs, the associated FPR is lower, being approximately 0.12

for both of the MOIs. Notice also that for both of the MOIs the test statistic is undefined for

the period 2000-2001 because the indicator has a fixed value over this period (it can be seen in

Figure 11 that both of the MOIs were indicating a buy signal for most of the period 1995-2001).

Figure 13(e) shows that for the volume-based indicator OBV1,9,t−1 the single predictive regime

referred to in Table 5 is detected in 05/10 and similar to the other TAIs the contiguous rejections

continue for several years after the initial detection date. For OBV1,12,t−1 in Figure 13(f), the

predictive regime is detected six-months earlier in 12/09 and the contiguous rejections continue

through to 08/13. In this case τe,m is undefined between 1999-2000.

Neely et al. (2014) find that similar to the MFVs, predictive regression models with TAIs

have larger R2 values for the NBER recession periods than for the expansion periods suggesting

stronger in-sample predictability during recessions. Interestingly there is also evidence support-

ing this argument in our results. Consider, for example, Figure 13(b) for MAI1,12,t−1. The first

predictive regime is detected shortly after the 2001 recession and the second predictive regime is

detected during the 2008-2009 recession. Notice also that for this predictor τe,m exceeds the rel-

evant critical value line over the 2001 recession, but this is not recognised as a predictive regime

because the contiguous run of rejections does not exceed the m̂∗ threshold for this predictor

(given in Table 6). For both of the MOIs, predictive regimes are detected during or shortly after

the 2001 and 2008-2009 recessions, and for the volume-based indicators predictive regimes are

detected shortly after the 2008-2009 recession.

7 Conclusions

In this paper we have developed a new real-time monitoring procedure for detecting the emer-

gence of predictive regimes. Our proposed method is based on the sequential application of

standard heteroskedasticity-robust (predictive) regression t-statistics for predictability to end-

of-sample data. Critical values for each test in the sequence are provided using subsampling

methods applied to data in a training period. Unlike tests based on conventional full sample

regression t-statistics for predictability, this renders the tests robust to both the degree of per-

sistence and endogeneity of the regressors in the predictive regression. They are also robust to

certain forms of heteroskedasticity in the shocks. A predictive regime is deemed to have occurred

once a certain number of consecutive t-statistics in the sequence have exceeded this estimated

critical value. This number can be set by the practitioner and we have discussed a data-based

procedure for choosing it, based on the longest run of exceedances in the training period, such

that the false positive rate of the monitoring procedure can be controlled, for a given monitoring

period length. Where the presence of a predictive regime is signalled by our procedure, we have
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also proposed procedures for dating the period over which the predictive relationship held. We

have applied our proposed monitoring approach to investigate for the presence of regime changes

in the predictability of the U.S. equity premium at the one-month horizon by traditional macroe-

conomic and financial variables, and by binary technical analysis indicators. Our results suggest

that the one-month ahead equity premium has displayed episodes of temporary predictability

and that these episodes could have been detected in real-time by practitioners using our proposed

methodology.
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Table 1. List of predictors used

Macroeconomic and financial variables (MFVs)
1. log dividend yield (dyt−1)
2. log dividend-price ratio (dpt−1)
3. log earnings-price ratio (ept−1)
4. book-to-market ratio (bmt−1)
5. short term yield (stt−1)
6. long-term yield (ltt−1)
7. long-term - short-term yield spread (spt−1 = ltt−1 − stt−1)
8. BAA-AAA corporate bond yield spread (dspt−1)
9. net equity expansion (ntist−1)
10. inflation (inft−1)

Technical analysis indicators (TAIs)
1. 1-9 moving average rule (MAI1,9,t−1)
2. 1-12 moving average rule indicator (MAI1,12,t−1)
3. 2-9 moving average rule (MAI2,9,t−1)
4. 2-12 moving average rule (MAI2,12,t−1)
5. 9 period momentum rule (MOI9,t−1)
6. 12 period momentum rule (MOI12,t−1)
7. 1-9 on balance volume rule (OBV1,9,t−1)
8. 1-12 on balance volume rule (OBV1,12,t−1)
9. 2-9 on balance volume rule (OBV2,9,t−1)
10. 2-12 on balance volume rule (OBV2,12,t−1)
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Table 2. Preliminary results for the full sample, 12/74-12/15

β̂ tNW IVcomb R2(%) R̄2(%)
MFVs

dyt−1 0.546 1.265 0.506 0.313 0.110
dpt−1 0.576 1.300* 0.606 0.345 0.141
ept−1 0.424 0.743 1.072 0.225 0.022
bmt−1 0.497 0.679 0.544 0.106 -0.098
stt−1 0.042 0.743 0.350 0.116 -0.087
ltt−1 0.036 0.513 0.398 0.056 -0.148
spt−1 0.108 0.826 -0.025 0.129 -0.075
dspt−1 0.135 0.216 0.064 0.021 -0.183
ntist−1 -0.005 -0.031 0.883 0.000 -0.204
inft−1 0.518 0.775 0.656 0.148 -0.056

TAIs
MAI1,9,t−1 0.431 0.838 0.513 0.200 -0.004
MAI1,12,t−1 0.647 1.125 1.142 0.415 0.212
MAI2,9,t−1 0.453 0.870 1.126 0.215 0.012
MAI2,12,t−1 0.802 1.490* 1.766* 0.648 0.445
MOI9,t−1 0.370 0.635 0.209 0.136 -0.067
MOI12,t−1 0.350 0.567 0.623 0.116 -0.088
OBV1,9,t−1 0.491 1.011 0.045 0.269 0.065
OBV1,12,t−1 0.679 1.281 0.150 0.488 0.285
OBV2,9,t−1 0.759 1.503* 0.478 0.637 0.434
OBV2,12,t−1 0.776 1.451* 0.761 0.642 0.439

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is
1.282. The critical value used for IVcomb is ± 1.645.
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Table 3. MFVs: preliminary results for each training period used when monitoring with
m = {20, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 20

dyt−1 -0.328 -0.424 -0.132 0.061 -0.298
dpt−1 -0.182 -0.243 0.226 0.019 -0.340
ept−1 0.026 0.041 -0.017 0.001 -0.358
bmt−1 -0.237 -0.276 -0.233 0.027 -0.331
stt−1 0.146 2.157* 2.440* 0.933 0.578
ltt−1 0.179 1.624* 2.380* 0.762 0.406
spt−1 0.172 1.179 1.179 0.370 0.013
dspt−1 0.414 0.700 1.270 0.220 -0.138
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 1.290 1.902* 1.376 0.868 0.512

m = 30
dyt−1 -0.262 -0.260 -0.086 0.031 -0.342
dpt−1 -0.125 -0.129 0.175 0.007 -0.365
ept−1 0.084 0.122 0.008 0.005 -0.367
bmt−1 -0.189 -0.204 -0.135 0.016 -0.355
stt−1 0.146 2.120* 2.466* 0.943 0.575
ltt−1 0.181 1.554* 2.442* 0.747 0.378
spt−1 0.186 1.276 1.144 0.436 0.066
dspt−1 0.477 0.776 1.409 0.283 -0.087
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 1.283 1.835* 1.333 0.854 0.485

m = 60
dyt−1 1.513 1.088 0.890 0.651 0.234
dpt−1 1.721 1.305 1.035 0.823 0.408
ept−1 0.569 0.770 0.632 0.226 -0.192
bmt−1 0.854 0.787 0.675 0.272 -0.145
stt−1 0.112 1.556* 2.405* 0.569 0.153
ltt−1 0.108 0.838 2.200* 0.241 -0.177
spt−1 0.212 1.450* 1.027 0.602 0.186
dspt−1 1.084 1.758* 2.197* 1.316 0.903
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 0.928 1.244 0.929 0.446 0.029

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is
1.282. The critical value used for IVcomb is ± 1.645. The training periods are 12/74-05/98 (for
m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60) for all predictors other than
ntist−1. For ntist−1 the training periods are 12/74-12/91 for all values of m.
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Table 4. TAIs: preliminary results for each training period used when monitoring with
m = {20, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 20

MAI1,9,t−1 -0.503 -0.862 -0.660 0.276 -0.082
MAI1,12,t−1 -0.043 -0.075 0.261 0.002 -0.357
MAI2,9,t−1 -0.067 -0.126 0.245 0.005 -0.354
MAI2,12,t−1 0.215 0.411 0.837 0.046 -0.313
MOI9,t−1 -0.230 -0.386 0.275 0.053 -0.305
MOI12,t−1 -0.447 -0.691 0.275 0.183 -0.175
OBV1,9,t−1 0.380 0.692 0.756 0.157 -0.201
OBV1,12,t−1 0.220 0.333 0.394 0.048 -0.310
OBV2,9,t−1 0.533 0.859 0.961 0.293 -0.064
OBV2,12,t−1 0.230 0.342 0.735 0.053 -0.305

m = 30
MAI1,9,t−1 -0.528 -0.896 -0.693 0.309 -0.062
MAI1,12,t−1 -0.060 -0.104 0.236 0.004 -0.368
MAI2,9,t−1 -0.086 -0.159 0.218 0.008 -0.364
MAI2,12,t−1 0.201 0.380 0.819 0.040 -0.331
MOI9,t−1 -0.250 -0.416 0.249 0.064 -0.308
MOI12,t−1 -0.468 -0.717 0.248 0.204 -0.167
OBV1,9,t−1 0.367 0.663 0.729 0.150 -0.222
OBV1,12,t−1 0.206 0.309 0.360 0.043 -0.329
OBV2,9,t−1 0.522 0.834 0.934 0.286 -0.084
OBV2,12,t−1 0.215 0.318 0.707 0.048 -0.324

m = 60
MAI1,9,t−1 -0.792 -1.317 -1.090 0.703 0.288
MAI1,12,t−1 -0.302 -0.506 -0.101 0.094 -0.324
MAI2,9,t−1 -0.251 -0.448 0.016 0.068 -0.349
MAI2,12,t−1 -0.030 -0.055 0.562 0.001 -0.418
MOI9,t−1 -0.503 -0.829 -0.039 0.265 -0.153
MOI12,t−1 -0.659 -0.997 -0.049 0.414 -0.003
OBV1,9,t−1 0.130 0.228 0.460 0.019 -0.399
OBV1,12,t−1 -0.026 -0.038 0.033 0.001 -0.418
OBV2,9,t−1 0.299 0.463 0.643 0.096 -0.322
OBV2,12,t−1 -0.019 -0.028 0.402 0.000 -0.418

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is
1.282. The critical value used for IVcomb is ± 1.645. The training periods are 12/74-05/98 (for
m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60).
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Table 5. MVFs: m̂∗ and number of predictive regimes detected

m = 20 m = 30 m = 60
π 0.10 0.05 0.10 0.05 0.10 0.05

m̂∗

dyt−1 9 6 6 6 8 4
dpt−1 7 2 11 3 11 4
ept−1 3 2 4 3 16 5
bmt−1 10 4 14 4 8 3
stt−1 9 8 17 9 5 3
ltt−1 10 4 17 4 9 3
spt−1 8 4 16 5 15 4
dspt−1 8 6 8 7 5 4
ntist−1 7 5 6 3 10 5
inft−1 16 6 9 5 15 9

Number of predictive regimes detected
dyt−1 0 0 0 0 2 2
dpt−1 0 0 0 0 3 2
ept−1 1 2 3 0 1 0
bmt−1 1 1 0 0 1 1
stt−1 0 0 0 0 0 0
ltt−1 1 3 1 1 2 1
spt−1 0 0 0 0 0 0
dspt−1 1 0 0 0 0 0
ntist−1 0 0 0 0 0 0
inft−1 0 0 0 0 0 0

Note. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and
12/74-01/95 (for m = 60) for all predictors other than ntist−1. For ntist−1 the training periods
are 12/74-12/91 for all values of m.
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Table 6. TAIs: m̂∗ and number of predictive regimes detected

m = 20 m = 30 m = 60
π 0.10 0.05 0.10 0.05 0.10 0.05

m̂∗

MAI1,9,t−1 12 8 23 8 9 6
MAI1,12,t−1 10 5 8 4 9 8
MAI2,9,t−1 12 7 22 8 6 3
MAI2,12,t−1 10 5 8 7 9 8
MOI9,t−1 4 3 5 4 12 6
MOI12,t−1 7 5 10 6 10 6
OBV1,9,t−1 11 7 14 9 10 7
OBV1,12,t−1 10 4 8 4 14 8
OBV2,9,t−1 8 6 7 6 10 6
OBV2,12,t−1 4 3 8 3 8 3

Number of predictive regimes detected
MAI1,9,t−1 1 1 1 1 2 1
MAI1,12,t−1 0 0 2 2 3 2
MAI2,9,t−1 0 1 2 0 2 2
MAI2,12,t−1 0 0 2 1 3 3
MOI9,t−1 3 1 3 3 2 3
MOI12,t−1 0 0 2 3 2 2
OBV1,9,t−1 0 1 1 1 1 3
OBV1,12,t−1 0 1 2 2 1 2
OBV2,9,t−1 1 0 0 0 2 0
OBV2,12,t−1 1 1 1 1 3 3

Note. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and
12/74-01/95 (for m = 60).
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Figure 2. Predictability regime detection frequency as a function of β1 (predictability strength) for different values of ρ: T = 493,
T ∗ +m = 302, E = 328, m1 = 30, m = 30
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Figure 3. Predictability regime detection frequency as a function of β1 (predictability strength) for different values of ρ: T = 493,
T ∗ +m = 302, E = 362, m1 = 30, m = 30
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Figure 4. Predictability regime detection frequency as a function of m1 (predictability regime length) for different values of β1:
T ∗ +m = 302, E = 328, m = 30, ρ = 0.995



10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 15 observations before the start of monitoring

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 5 observations before the start of monitoring

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) At the same time as the start of monitoring

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 5 observations after the start of monitoring

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) 15 observations after the start of monitoring

Figure 5. Predictability regime detection frequency as a function of m1 (predictability regime length) for different values of β1:
T ∗ +m = 302, E = 362, m = 30, ρ = 0.995
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Figure 6. Detection frequency for second predictability regime as a function of β2 (predictability strength) for different values of ρ:
T = 493, T ∗ +m = 302, E = 328, m1 = 30, m2 = 30, m = 30
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Figure 7. Detection frequency for second predictability regime as a function of β2 (predictability strength) for different values of ρ:
T = 493, T ∗ +m = 302, E = 362, m1 = 30, m2 = 30, m = 30
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Figure 8. Detection frequency for second predictability regime as a function of m2 (predictability regime length) for different values
of β2: T ∗ +m = 302, E = 328, m = 30, ρ = 0.995
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Figure 9. Detection frequency for second predictability regime as a function of m2 (predictability regime length) for different values
of β2: T ∗ +m = 302, E = 362, m = 30, ρ = 0.995
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Figure 10. Excess returns and MFVs
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Figure 10 Continued. Excess returns and MFVs
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Figure 11. TAIs and the S&P Composite price index
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Figure 12. Monitoring results: MFVs
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(c) ept−1, m = 20
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(d) ept−1, m = 30

Figure 12 continued. Monitoring results: MFVs
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(f) bmt−1, m = 20

Figure 12 continued. Monitoring results: MFVs
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Figure 12 continued. Monitoring results: MFVs
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Figure 12 continued. Monitoring results: MFVs
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Figure 12 continued. Monitoring results: MFVs
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(a) MAI1,9,t−1, m = 60
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Figure 13. Monitoring results: TAIs
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Figure 13 continued. Monitoring results: TAIs
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(e) OBV1,9,t−1, m = 60
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Figure 13 continued. Monitoring results: TAIs


