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Introduction and Motivation

We develop implementations of the popular Bonferroni Q test of Campbell
and Yogo (2006) [CY] for return predictability that are designed to achieve
much greater robustness to both the magnitude of the initial condition
and the degree of persistence of the predictor than the original CY test.

While the original CY test displays excellent power properties for strongly
persistent predictors with an asymptotically negligible initial condition, we
show that it can suffer from very severe size distortions and/or
catastrophic power losses when either the initial condition is
asymptotically non-negligible or the predictor is weakly persistent.
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Motivation

As an empirical illustration, when using the Bonferroni Q test CY find
that the earnings-price ratio is a significant predictor for monthly returns
of the NYSE/AMEX value-weighted index from the Center for Research in
Security Prices (CRSP) for the period 1926M12-1994M12.

We repeated this exercise, but applied the Bonferroni Q test sequentially
by moving the start date along by one period (until we reached the end of
1945) thereby effecting a different initial condition in the dataset used to
compute each of the Q tests in this sequence.

For each candidate start date we recorded the lower bound of the
confidence interval [CI] for the predictive regression [PR] coefficient β and
an estimate of the magnitude of the initial condition of the predictor
variable, |θ̂| (subsequently defined in Equation (13)), using the method
proposed by Harvey and Leybourne (2005).
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Lower Bound of CI For β From Bonferroni Q Test Across Start Dates
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Motivation

Where the lines intercept the left axis corresponds to the full sample result
of CY.

For other start dates we see an inverse relationship between the lower
bound of the the CI and |θ̂| - ie “large” estimates of the initial condition
are associated with CIs for β with much lower lower bounds and, hence,
non-rejections of the no predictability null.

Suggests that the empirical properties of the Q test may be highly
sensitive to the magnitude of the initial condition of the predictor.

Our simulations confirm this, showing the power of the Q test is severely
diminished by large initial conditions.
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Motivation

We also find that while the Bonferroni Q test of CY is highly sensitive to
the magnitude of the initial condition, the Bonferroni t-test of Cavanagh
et al. (1995) is not.

However, while the Bonferroni t-test is relatively robust to the magnitude
of the initial condition, it is far less powerful than the Bonferroni Q test
when the initial condition is asymptotically negligible.

Accordingly, we develop hybrid testing strategies to exploit the best of
these differing properties.

Specifically, we consider a union-of-rejections of these two tests, and a
strategy that takes a weighted average of the two tests, with the weight
being a function of an estimate of the magnitude of the initial condition.

In this presentation we focus on right-sided tests on β. We find in our
paper that for left tailed tests one should, in fact, simply use the
Bonferroni t-test.
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The Predictive Regression Model

We consider the following predictive regression model

rt = α + βxt−1 + ut , t = 1, ...,T (1)

where rt denotes the (excess) return in period t, and xt−1 denotes a
(putative) predictor observed at time t − 1.

We assume the DGP for xt is given by

xt = µ+ wt , t = 0, ...,T (2)

wt = ρwt−1 + vt , t = 1, ...,T . (3)

We focus on testing the null hypothesis of no predictability, H0 : β = 0,
against the right-sided alternative (positive predictability) H1 : β > 0
(left-tailed testing is also covered in the paper).
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The Predictive Regression Model

Assumption 1

We assume that ψ(L)vt = et where ψ(L) :=
∑p−1

i=0 ψiL
i with ψ0 = 1 and

ψ(1) 6= 0, with the roots of ψ(L) assumed to be less than one in absolute value.

We assume that zt := (ut , et)
′ is a bivariate martingale difference sequence

with respect to the natural filtration Ft := σ {zs , s ≤ t} satisfying the following

conditions: (i) E [ztz
′
t ] =

[
σ2
u σue

σue σ2
e

]
, (ii) supt E [u4

t ] <∞, and (iii) supt

E [e4t ] <∞.

We define ω2
v := limT→∞ T−1E(

∑T
t=1 vt)

2 = σ2
e/ψ(1)2 to be the long run

variance of the error process {vt}, and δ := σue/σuσe as the correlation
between the innovations {ut} and {et}.



Introduction Model and Extant Tests Proposed Tests Simulations Empirical Application Conclusion

Potential Assumptions for xt

Assumption 2

The predictor {xt} is strongly persistent, with the autoregressive parameter ρ in
(3) given by ρ = 1− c/T with c = 0. The initial condition w0 is unrestricted.

Assumption 3

The predictor {xt} is strongly persistent, with the autoregressive parameter ρ in
(3) given by ρ = 1− c/T with c a finite non-zero constant. The initial
condition is given by w0 = op(T 1/2).

Assumption 4

The predictor {xt} is strongly persistent, with the autoregressive parameter ρ in
(3) given by ρ = 1− c/T with c a finite positive constant. The initial
condition is given by w0 = θσw where σ2

w denotes the short run variance of the
process {wt} and θ ∼ N(µθI (σ

2
θ = 0), σ2

θ). When σ2
θ > 0 we further assume

that the random variable θ is independent of zt for all t.
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The Bonferroni Q test

The Bonferroni Q test of CY is constructed under the assumption that
either Assumption 2 or 3 holds.

The CY test is based around estimates of β and its standard error from a
version of (1) augmented by the (infeasible) additional regressor
(xt − ρxt−1).

To make the test feasible, an initial 100(1− α1)% (asymptotic) confidence
interval for ρ is calculated by inverting some unit root test statistic, with
this confidence interval denoted [ρ, ρ̄].

An equal tailed 100(1− α2)% confidence interval for β given ρ is obtained
by running regression (1), but with rt replaced by
rt − σ̂ue(σ̂e ω̂v )−1(xt − ρxt−1) and rt − σ̂ue(σ̂e ω̂v )−1(xt − ρ̄xt−1),
respectively.

By Bonferroni’s inequality this CI for β will have coverage of at least
100(1− α)% where α := α1 + α2.
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The Refined Bonferroni Q test

CY find this method can be very be conservative so, for a given value of δ,
they propose a refined method where the value of α1 is chosen to give a
one-sided test for predictability with maximum asymptotic size of 5%
when either Assumption 2 or 3 hold.

We omit details for the Bonferroni t test of Cavanagh et al. (1995), which
is based around the simple OLS estimates of β and its standard error from
(1), but a similar refined Bonferroni strategy can be employed to deliver a
test with maximum asymptotic size of 5% when either Assumption 2 or 3
holds.
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Limit Distribution of Test Statistics Under Assumption 2 or 3

Theorem 1

Let data be generated according to (1)-(3). Let (Wu(s),We(s)) be a
two-dimensional Weiner process with correlation parameter δ, and let We,c(s)
be the Ornstein-Uhlenbeck process defined by the stochastic differential
equation dWe,c(s) = cWe,c(s)ds + dWe(s) with initial condition We,c(0) = 0.
If Assumption 2 or 3 holds, then under the local alternative Hb : β = T−1b,

(a) t
w→ bωvκc

σu
+ δ

τc
κc

+ (1− δ2)1/2Z (4)

(b) Q(c̃)
w→ bωvκc

σu(1− δ2)1/2
+
δ(c̃ − c)κc

(1− δ2)1/2
+ Z (5)

where κc := (
∫ 1

0
W µ

e,c(s)2ds)1/2 and τc :=
∫ 1

0
W µ

e,c(s)dWe(s) with

W µ
e,c(s) := We,c(s)−

∫ 1

0
We,c(r)dr, and where Z is a standard normal random

variable independent of We(s).
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Limit Distribution of Test Statistics Under Assumption 4

Theorem 2

Let data be generated according to (1)-(3). Let Wu(s), We(s) and We,c(s) be
as defined in Theorem 1. If Assumption 4 holds then under the local alternative
Hb : β = T−1b,

(a) t
w→ bωvκ

θ
c

σu
+ δ

τθc
κθc

+ (1− δ2)1/2Z (6)

(b) Q(c̃)
w→ bωvκ

θ
c

σu(1− δ2)1/2
+
δ(c̃ − c)κθc
(1− δ2)1/2

+ Z (7)

where κθc := (
∫ 1

0
Kµ

c (s)2ds)1/2 and τθc :=
∫ 1

0
Kµ

c (s)dWe(s) with

Kµ
c (s) := Kc(s)−

∫ 1

0
Kc(r)dr and

Kc(r) := θ(e−rc − 1)(2c)−1/2 + We,c(r) (8)

and where Z ∼ N(0, 1) is a standard normal random variable that is
independent of We(s).
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Limit Distribution Under Assumption 4

The limit distributions of the Q and t tests when Assumption 4 holds are
different to those found by CY and Cavanagh et al. (1995), displaying
dependence on the initial condition.

The same is true for the limit distributions of the unit root test statistics
used to construct the initial CI for ρ. And the behaviour of these unit root
statistics will be crucial in determining the behaviour of the Bonferroni
tests.

We now explore the impact of a non-negligible initial condition. We
concentrate on fixed initial conditions (σ2

θ = 0), so that θ = µθ, but
quantitatively similar results were found for random initial conditions.

We report results for when either the DF-OLS or DF-GLS unit root test
statistic is used to construct the initial CI for ρ. A superscript OLS/GLS
indicates the former/latter.



Introduction Model and Extant Tests Proposed Tests Simulations Empirical Application Conclusion

Local Asymptotic Power. c = 2, θ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power. c = 2, θ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power. c = 2, θ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power. c = 10, θ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power. c = 10, θ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power. c = 10, θ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -
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Local Asymptotic Power

We see that the QGLS test of CY is severely impacted by a non-zero initial
condition, being badly undersized and severely lacking in power. tGLS

shows similar, though less extreme, patterns, while QOLS has a tendency
to over-sizing for a large initial condition.

The tOLS test of Cavanagh et al. (1995), however, retains size control
regardless of the value of θ and power is not impacted too much by large
initial conditions.

Therefore, we ideally want to use QGLS when the initial condition is small,
and tOLS when the initial condition is large.

We next outline the hybrid testing strategies we propose to do exactly this.
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A Union of Rejection Strategy

Our first proposed testing strategy is a union-of-rejections test, U, defined by
the decision rule

U : Reject H0 if U > 0 (9)

where
U := max

(
βQGLS

, βtOLS
)
. (10)

and where βQGLS

and βtOLS

denote the lower bound of the CI for β from the

QGLS and tOLS tests, respectively.

The significance level at which the initial unit root tests are performed are, for
a given value of δ, chosen such that the asymptotic size of U is no greater than
5% across a specified range of values of c and initial conditions.

This testing strategy exploits the superior power of QGLS when θ is small and
tOLS when θ is large.
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A Weighting Strategy

Our second proposed testing strategy is a weighting strategy, Wγ , defined by
the decision rule

Wγ : Reject H0 if W γ > 0 (11)

where W γ is a weighted average of the lower confidence interval bounds for β

from the QGLS and tOLS tests, viz:

W γ := λγ(|θ̂|)βQGLS

+ (1− λγ(|θ̂|))βtOLS

, (12)

and where |θ̂| is an estimate of the magnitude of the initial condition of the
predictor, and λγ(|θ̂|) is a function of |θ̂| that is designed to be large (small)
when |θ̂| is small (large).
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A Weighting Strategy

We follow Harvey and Leybourne (2005) and use the following estimate of the
magnitude of the initial condition

|θ̂| := |x0 − µ̂|/σ̂w , (13)

where µ̂ := T−1∑T
t=1 xt and σ̂2

w := T−1∑T
t=1(xt − µ̂)2.

We also make use of the same weight function, λγ(|θ̂|), used by Harvey and
Leybourne (2005) in the context of testing for a unit root, given by:

λγ(|θ̂|) := exp(−γ|θ̂|) (14)

For a given value of γ, we once again select the significance level at which the
initial unit root tests are performed for the constituent QGLS and tOLS tests
such that the Wγ test has size no greater than 5% across a specified range of
values of c and initial conditions.

We will report results for this testing strategy using γ = 1, 2.
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Hybrid Testing Strategies

Up until now we have assumed that the predictor, xt , is strongly
persistent. The QGLS and tOLS tests, along with the U and Wγ tests we
propose, are all constructed under this assumption.

When the predictor is weakly persistent we will show that the QGLS test in
particular suffers from severe distortions.

We therefore propose a simple modification to the U and Wγ tests
whereby they switch to using the standard t-test, comparing with standard
normal critical values, if there is sufficient evidence that the predictor is
weakly stationary.

To ensure that the standard t-test is used asymptotically when the
predictor is weakly stationary we apply the standard t-test instead of the
U and Wγ test whenever the normalised bias ADF statistic applied to the
predictor is less than −4.5T 1/2.

We will denote these hybrid testing strategies as Uhyb and W hyb
γ .
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Local Asymptotic Power of Proposed Tests. c = 2, θ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests. c = 2, θ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests. c = 2, θ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests. c = 10, θ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests. c = 10, θ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests. c = 10, θ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Local Asymptotic Power of Proposed Tests

Our proposed hybrid testing strategies offer an attractive overall power
profile relative to extant tests.

For strongly persistent predictors, when the initial condition is small they
offer power close to that of the QGLS test.

For strongly persistent predictors, when the initial condition is large they
offer power close to that of the tOLS test.

We will now show that this also manifests in finite samples.
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Finite Sample Simulations

Data were generated according to

rt = α + βxt−1 + ut , t = 1, ...,T

xt = µ+ wt , t = 0, ...,T

wt = ρwt−1 + vt , t = 1, ...,T

with α = µ = 0 (without loss of generality), ρ = 1− c/T and a sample size of
T = 250.The innovations {ut}, {vt} have correlation parameter δ and are
drawn from a bivariate normal distribution.

We considered c = 0 (i.e. Assumption 2) and a range of c > 0 values,
c ∈ {2, 5, 10, 20, 50, 100, 250}, with the values of c ≤ 50 chosen to demonstrate
the behaviour of the tests when the predictor is a strongly persistent process,
and the values of c ≥ 100 used to illustrate the behaviour of the tests when the
predictor is weakly persistent given that c ≥ 100 implies that ρ ≤ 0.6.
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Finite Sample Simulations

When c > 0, the initial condition w0 is either generated as a N(0, 1) [tables
and graphs labelled µθ = 0], such that Assumption 3 holds, or as fixed
according to Assumption 4, with θ = µθ ∈ {1, 3}.

The DF-OLS and DF-GLS unit root test statistics used to construct the tests
for predictability were estimated using a lag length chosen by the Bayes
Information Criterion with pmax = 5, with this lag length selection method also
used for the Dickey-Fuller normalised bias coefficient unit root test statistic
used in the switching mechanism to the standard t-test in the hybrid tests.
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Finite Sample Size. µθ = 0, δ = −0.95

c tGLS tOLS QGLS QOLS Uhyb W hyb
1 W hyb

2

0 0.049 0.052 0.044 0.052 0.048 0.054 0.046
2 0.039 0.042 0.048 0.041 0.036 0.043 0.036
5 0.040 0.046 0.045 0.034 0.034 0.041 0.035

10 0.042 0.047 0.044 0.035 0.039 0.039 0.038
20 0.046 0.051 0.036 0.037 0.048 0.035 0.036
50 0.044 0.048 0.032 0.048 0.056 0.052 0.050

100 0.038 0.041 0.048 0.115 0.060 0.060 0.060
250 0.035 0.036 0.275 0.899 0.053 0.053 0.053
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Finite Sample Size. µθ = 1, δ = −0.95

c tGLS tOLS QGLS QOLS Uhyb W hyb
1 W hyb

2

0 0.049 0.052 0.044 0.052 0.048 0.054 0.046
2 0.027 0.037 0.028 0.039 0.027 0.034 0.027
5 0.020 0.039 0.014 0.034 0.026 0.028 0.028

10 0.019 0.045 0.006 0.036 0.036 0.025 0.034
20 0.027 0.049 0.003 0.037 0.045 0.019 0.035
50 0.035 0.048 0.000 0.049 0.053 0.043 0.046

100 0.037 0.040 0.000 0.116 0.061 0.061 0.061
250 0.035 0.036 0.000 0.898 0.053 0.053 0.053
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Finite Sample Size. µθ = 3, δ = −0.95

c tGLS tOLS QGLS QOLS Uhyb W hyb
1 W hyb

2

0 0.049 0.052 0.044 0.052 0.048 0.054 0.046
2 0.018 0.040 0.001 0.065 0.030 0.034 0.031
5 0.010 0.046 0.000 0.089 0.035 0.037 0.038

10 0.004 0.047 0.000 0.094 0.041 0.039 0.043
20 0.003 0.043 0.000 0.085 0.040 0.036 0.041
50 0.005 0.044 0.000 0.097 0.048 0.044 0.048

100 0.012 0.042 0.000 0.184 0.060 0.060 0.060
250 0.021 0.034 0.000 0.931 0.053 0.053 0.053
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Finite Sample Power of Proposed Tests. c = 2, µθ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Finite Sample Power of Proposed Tests. c = 2, µθ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Finite Sample Power of Proposed Tests. c = 2, µθ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Finite Sample Power of Proposed Tests. c = 10, µθ = 0, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Finite Sample Power of Proposed Tests. c = 10, µθ = 1, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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Finite Sample Power of Proposed Tests. c = 10, µθ = 3, δ = −0.95

tGLS : —— ,tOLS : - - - , QGLS : ——, QOLS : - - -

Uhyb——, W hyb
1 : – –, W hyb

2 : –.–
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We now revisit the dataset of CY to further illustrate the sensitivity of
their QGLS test to the value of the initial condition of the predictor, and to
explore to what extent our proposed Uhyb and W hyb

γ hybrid procedures are
able to overcome this.

We applied all test procedures to the same empirical returns/predictor
pairings considered in CY, but rather than applying the procedures to only
the full sample of data, we applied them sequentially across all possible
start dates, ts up until we reached the end of 1945.

The following figures display plots of the lower bound of the CI for β and
the estimated magnitude of the initial condition, along with the rejection
frequency across start dates, for each test.

We report results for both quarterly and monthly frequency CRSP returns
from 1926-1994 using the earnings-price ratio as a predictor. Results for
all return/predictor pairings considered by CY are available in the paper.
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Quarterly CRSP 1926-1994. x = e − p, QGLS Test. (Rejection Rate 77%)
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Quarterly CRSP 1926-1994. x = e − p, U Test. (Rejection Rate 96%)
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Quarterly CRSP 1926-1994. x = e − p, W hyb
1 Test. (Rejection Rate 100%)
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Quarterly CRSP 1926-1994. x = e − p, W hyb
2 Test. (Rejection Rate 97%)
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Monthly CRSP 1926-1994. x = e − p, QGLS Test. (Rejection Rate 74%)
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Monthly CRSP 1926-1994. x = e − p, U Test. (Rejection Rate 95%)
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Monthly CRSP 1926-1994. x = e − p, W hyb
1 Test. (Rejection Rate 100%)
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Monthly CRSP 1926-1994. x = e − p, W hyb
2 Test. (Rejection Rate 93%)
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Empirical Application

We see that our proposed hybrid tests reject with greater frequency across
start dates than the QGLS test.

While the QGLS test is more likely to reject for small values of |θ̂|, it often
fails to reject for larger values of |θ̂|.
Our hybrid tests, on the other hand, display a much more consistent
pattern of rejections across the estimated values of |θ̂|.
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We propose hybrid testing strategies that are functions of the QGLS test of
CY and the tOLS test of Cavanagh et al. (1995).

We show that when the predictor is local to unity these hybrid tests deliver
good size control and power regardless of the magnitude of the initial
condition.

The QGLS test, on the other hand, displays significant under-size and poor
power when the predictor is local-to-unity and the initial condition is large.

The hybrid tests are also made robust to a weakly persistent predictor by
having them switch into the standard t-test when there is sufficient
evidence that the predictor is weakly stationary.

Revisiting the empirical application of CY show that our proposed hybrid
tests reject much more consistently than the QGLS test across start dates
for this dataset, giving further evidence of their robustness to the
magnitude of the initial condition.
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