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Abstract

Predictive regression methods are widely used to examine the predictability of (excess)
stock returns by lagged financial variables characterised by unknown degrees of persistence
and endogeneity. We develop new and easy to implement tests for predictability in these
circumstances using regression t-ratios. The simplest possible test, optimal (under Gaus-
sianity) for a weakly persistent and exogenous predictor, is based on the standard t-ratio
from the OLS regression of returns on a constant and the lagged predictor. Where the
predictor is endogenous, we show that the optimal, but infeasible, test for predictability
is based on the t-ratio on the lagged predictor when augmenting the basic predictive re-
gression above with the current period innovation driving the predictor. We propose a
feasible version of this test, designed for the case where the predictor is an endogenous
near-unit root process, using a GLS-based estimate of this innovation. We also discuss a
variant of the standard t-ratio obtained from the predictive regression of OLS demeaned
returns on the GLS demeaned lagged predictor. In the near-unit root case, the limiting
null distributions of these three statistics depend on both the endogeneity correlation pa-
rameter and the local-to-unity parameter characterising the predictor. A feasible method
for obtaining asymptotic critical values is discussed and response surfaces are provided. To
develop procedures which display good size and power properties regardless of the degree of
persistence of the predictor, we propose tests based on weighted combinations of the three
t-ratios discussed above, where the weights are obtained using the p-values from a unit root
test on the predictor. Using Monte Carlo methods we compare our preferred weighted test
with the leading tests in the literature. These results suggest that, despite their simplicity,
our weighted tests display very good finite sample size control and power across a range of
persistence and endogeneity levels for the predictor, comparing very favourably with these
extant tests. An empirical illustration using US stock returns is provided.

Keywords: predictive regression; persistence; endogeneity; weighted statistics.

JEL classification: C12, C22

∗Taylor gratefully acknowledges financial support provided by the Economic and Social Research Coun-
cil of the United Kingdom under research grant ES/R00496X/1. Correspondence to: Robert Taylor, Es-
sex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. Email:
robert.taylor@essex.ac.uk



1 Introduction

A large body of empirical research has been undertaken investigating whether stock returns can

be predicted using publicly available data. A wide range of financial and macroeconomic vari-

ables has been considered as putative predictors for returns, including: valuation ratios such

as the dividend-price ratio, dividend yield, earnings-price ratio, and book-to-market ratio; var-

ious interest rates and interest rate spreads, and macroeconomic variables including inflation

and industrial production; see, for example, Fama (1981), Keim and Stambaugh (1986), Camp-

bell (1987), Campbell and Shiller (1988a,b), Fama and French (1988, 1989) and Fama (1990).

Empirical evidence on the predictability of returns largely derives from inference obtained from

predictive regressions and, as such, the size and power properties of predictability tests from these

regressions are of fundamental importance. These will depend on the time series properties of

the predictors, in particular on their degree of persistence. Accordingly, several authors have

argued that the findings from the studies cited above may be spurious. Nelson and Kim (1993)

and Stambaugh (1999) show that highly persistent predictors lead to biased coefficient estimates

from the predictive regressions if the innovations driving the predictors are correlated with re-

turns (such that the predictive regressor is endogenous), as is argued to be the case for many

of the popular macroeconomic and financial variables used as predictors; for example, the stock

price is a component of both the return and the dividend yield. Goyal and Welch (2003) show

that the persistence of dividend-based valuation ratios increased significantly over the typical

sample periods used in empirical studies of predictability, and argue that, as a consequence, out-

of-sample predictions using these variables are no better than those from a no-change strategy.

Empirical evidence presented in, among others, Campbell and Yogo (2006) [hereafter CY] and

Welch and Goyal (2008), suggests that many of the variables used in predictive regressions are

highly persistent with autoregressive roots close to unity, and that a strong negative correlation

often exists between returns and the predictors’ innovations.

As a result, a number of predictability tests have been developed in the literature which are

designed to be asymptotically valid when the predictor is strongly persistent and endogenous;

see, among others, Cavanagh et al. (1995), Torous et al. (2004), CY, Kostakis et al. (2015),

Breitung and Demetrescu (2015), Elliott et al. (2015) and Jansson and Moreira (2006). When

such robust techniques are used the statistical evidence of predictability is considerably weaker

and often disappears completely; see, among others, Ang and Bekaert (2007), Boudoukh et al.

(2007), Welch and Goyal (2008) and Breitung and Demetrescu (2015). These methods are based

on a formulation where a predictor, xt−1 say, is assumed to follow a first-order autoregression

with coefficient φ = 1 − c/T , where c is a finite non-negative constant and T is the sample

size, which therefore approaches a random walk as T increases to infinity. In this case standard

statistics, such as the associated regression t-ratio and likelihood ratio statistics, from the pre-

dictive regression have limiting distributions which depend on c and on the correlation between

1



the innovations driving the predictor and returns; see, for example, Cavanagh et al. (1995).

Two methodological strands have developed in the literature to deliver asymptotically valid

inference in this setting. The first remains based around the non-pivotal standard statistics from

the predictive regression but uses methods of inference which account for the non-pivotal nature

of these statistics. The leading example of this approach in the literature is CY who adapt the

econometric methods developed in Cavanagh et al. (1995) based on inverting the non-pivotal limit

distribution of the t-ratio and constructing, among other approaches, Bonferroni-type confidence

intervals for the nuisance parameter c. The Q statistic of CY is widely regarded as the current

state of the art methodology in the literature for testing the predictability of stock returns with

highly persistent regressors.

In the second methodological strand, predictability tests are based on (asymptotically) pivotal

statistics, obtained using alternative methods of estimating the predictive regression which take

account of the properties of the regressor, rather than on the standard non-pivotal statistics.

This has been achieved in two ways in the literature. The first, typified by the work of Toda

and Yamamoto (1995), Dolado and Lutkepohl (1996), Bauer and Maynard (2012) and Breitung

and Demetrescu (2015), uses variable addition whereby the predictive regression equation is

augmented with additional (redundant) variables such that the coefficient of interest becomes

associated with a stationary variable. Variable addition-based methods in general, however, have

considerably lower power to reject against predictability than do the tests based on non-pivotal

statistics discussed above. A second, more powerful approach, has been to use instrumental

variable [IV] estimation of the predictive regression model. Phillips and Magdalinos (2009) and

Kostakis et al. (2015) adopt this approach whereby each predictor in the predictive regression

has an associated stochastic instrument formed by constructing a mildly integrated variable from

the first differences of the predictor, what they term an extended IV or IVX instrument. The

IVX instrument, by construction, has lower persistence than a local-to-unity variable and, as

such, delivers an asymptotically pivotal predictability statistic. Breitung and Demetrescu (2015)

discuss tests based on a variety of instruments fulfilling the same role as the IVX instrument

in that, by construction, they are less persistent than a local-to-unity variable; they term these

Type I instruments. They also discuss the use of Type 2 instruments, which may be either a

non-stationary variable or a deterministic function of time, both satisfying the condition that it

is independent of the associated predictor. They also discuss a testing procedure which combines

both a Type 1 and a Type 2 instrument for each predictor.

A major practical drawback in implementing the first methodology relative to the second is

that the method is invalid if the regressor is stationary or near-stationary; the theoretical validity

of the method requires each predictor to be at least as persistent as a local-to-unity process. In

contrast, the second approach is valid regardless of whether the predictors are local to unity

or weakly dependent (stationary). In particular, the tests developed in Kostakis et al. (2015)

and Breitung and Demetrescu (2015) based on a Type 1 instrument are designed for the case
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where the predictor is less persistent than a local-to-unity process, the leading case of interest

being where it is stationary (weakly dependent). However, although still theoretically valid,

their power is not as high as tests designed for local-to-unity predictors when the predictors

are indeed strongly dependent. The combined instrument test of Breitung and Demetrescu

(2015) is designed to mitigate against this such that, in large samples, it reverts to the Type 2

instrument when the predictor is local-to-unity but to the Type 1 instrument when the predictor

is stationary. A very significant drawback with this approach, however, is that it can only be

implemented as a two-tailed test and so when the direction of predictability from a given variable

is known, it has considerably lower power than the one-sided tests.

In this paper we explore further how one can develop testing strategies which retain both good

size properties and strong power profiles regardless of the degree of persistence of the predictor

and which retain the flexibility that they can be implemented as either one-tailed or two-tailed

tests. Our approach is focused on easy to implement tests using regression t-ratios. In particular,

we propose a test based on a weighted combination of t-statistics, the weights depending on the

persistence of the predictor via a function of the p-values from a standard Dickey-Fuller-type

unit root test applied to the predictor. The constituent t-statistics are (i) a t-ratio on the lagged

predictor when augmenting the basic predictive regression with a GLS-based estimate of the

current period innovation driving the predictor (an infeasible version of this test using the actual

current period innovation is optimal when the predictor is endogenous), and (ii) a t-ratio from

a variant of the standard predictive regression where the OLS demeaned returns are regressed

on the GLS demeaned lagged predictor. A further modification combines the weighted test with

the standard t-ratio. In the near-unit root case, the proposed individual, weighted and modified

weighted statistics have limiting null distributions which depend on both the endogeneity cor-

relation parameter and the local-to-unity parameter characterising the predictor. We therefore

propose a feasible method for obtaining asymptotic critical values and provide response surfaces

for use in practice. We find that the newly proposed tests perform well in terms of finite sample

size and power across a range of persistence levels for the predictor, and compare very favourably

with extant tests, offering simple yet highly effective methods for predictability testing.

The remainder of the paper is organised as follows. Section 2 introduces the predictive

regression model which we will consider in this paper together with the assumptions which we

place on this data generating process [DGP]. These include the assumption that the innovations

in the predictive regression model are independent and identically distributed (IID). In section

3, we present the three individual t-statistics that we employ and establish their asymptotic

properties. Here we also outline our method for obtaining asymptotic critical values and use

Monte Carlo simulation methods to compare the finite sample size and power properties of the

resulting three t-tests. These simulation results provide motivation for the weighted statistics

that we propose and evaluate in section 4. In section 5 we investigate the finite sample size and

power properties of our proposed weighted tests and compare them with the leading tests in the
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literature, namely those due to Campbell and Yogo (2006), Kostakis et al. (2015) and Breitung

and Demetrescu (2015). Section 6 contains an empirical illustration using monthly U.S. stock

returns data. Section 7 concludes. Proofs are contained in a mathematical appendix.

2 The Predictive Regression Model

Let yt denote the (excess) stock return in period t and let xt−1 denote a variable observed at

time t− 1 which is considered to be a putative predictor for yt. The predictive regression model

we consider is

yt = αy + βxt−1 + εyt, t = 2, ..., T (1)

where xt is an observed process, specified according to the DGP

xt = αx + st, t = 1, ..., T

st = φst−1 + εxt, t = 2, ..., T (2)

with s1 a mean zero Op(1) random variable.

As discussed in the Introduction it is important for practical purposes to allow for the possi-

bility of high persistence in the predictor variable xt and to allow the shocks driving the predictor,

εxt in (2), to be correlated with the unpredictable component of stock returns, εyt in (1). As

regards the latter, we assume that the innovation vector εt := (εxt, εyt)
′ is IID with finite fourth

order moments and satisfying [
εxt

εyt

]
∼ IID

(
0,

[
σ2
x σxy

σxy σ2
y

])
.

The assumption that εt is a vector IID process is made in order to simplify our presentation.

We will later discuss in section 4 how the methods we propose can be modified to allow for weak

dependence and/or heteroskedasticity in εt.

With respect to the degree of persistence in xt, we allow φ in (2) to satisfy one of the following

two assumptions:

Assumption S. Strongly persistent predictor: The autoregressive parameter φ in (2) is local-to-

unity with φ := 1− cT−1 where c is a fixed non-negative constant.

Assumption W. Weakly dependent predictor: The autoregressive parameter φ in (2) is fixed and

bounded away from unity, |φ| < 1.

Remark 1. Many predictors are strongly persistent, exhibiting sums of sample autoregressive

coefficients which are close to or only slightly smaller than unity. Near-integrated asymptotics

have been found to provide better approximations for the behaviour of test statistics in such
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circumstances; see, inter alia, Elliott and Stock (1994). However, not all (putative) predictors

are strongly persistent and a large part of the literature works with models which take xt to be

generated from a stable autoregressive process; see, for example, Amihud and Hurvich (2004).

We therefore allow for either of these possibilities to hold for xt. ♦

Our interest in this paper centres on developing tests of the null hypothesis that yt is not

predictable by xt−1, i.e. H0 : β = 0 in (1), which do not require the practitioner to know which

of Assumption S or Assumption W holds for φ in (2). The alternative hypothesis is that yt

is predictable by xt−1, in which case β 6= 0. Predictive regressions for stock returns typically

exhibit a small R2 and low signal-to-noise ratios (see, inter alia, Campbell, 2008, and Phillips,

2015) so that departures from the null, should predictability be present, are likely to be small.

Consequently, we will establish the large sample behaviour of the new predictability tests we

propose in this paper under local alternatives such that the slope parameter β in (1) is local-to-

zero. The localisation rate (or Pitman drift) will need to be such that β is specified to lie in a

neighbourhood of zero which shrinks with the sample size, T . The appropriate Pitman drift is

dictated by which of Assumption S and Assumption W holds. Where xt is strongly persistent

the appropriate local alternative is given by Hg,S : β = gT−1, while for weakly dependent xt, it is

given by Hg,W : β = gT−1/2, where in each case g is a finite constant. The different localisation

rates reflect the fact that near-integration implies a much stronger signal from the predictor xt−1.

The familiar Cholesky decomposition allows us to write the two components of εt in the form

εxt = σxe1t (3)

εyt = σy

(
ρxye1t +

√
1− ρ2

xye2t

)
where et := (e1t, e2t)

′ ∼ IID (0, I2) and ρxy := σxy/(σxσy) is the contemporaneous correlation

between the innovations driving the predictor, εxt, and the unpredictable component of stock

returns, εyt. Using this representation, we can then re-write the predictive regression in (1) as

yt = αy + βxt−1 +

(
σy
σx
ρxy

)
εxt +

(
σy

√
1− ρ2

xy

)
e2t. (4)

The representation in (4) is instructive, in that it demonstrates how a predictive regression

featuring an endogenous predictor xt−1, such as (1), can be re-written using εxt as an additional

covariate in a form in which the predictor regressor, xt−1, is strictly exogenous.

3 Predictability Tests

In what follows it is convenient to define a generically notated regression model:

yt = α + βxt−1 + δzxt + vt. (5)
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and consider the t-test associated with the OLS estimate of β in (5).

3.1 An Infeasible Test

If εxt was observed (abstracting from the constant αx, this is equivalent to knowing φ), we

could then perform a standard OLS regression in (5) with zxt = εxt, which is clearly a correct

specification with respect to the DGP in (4). Denoting the corresponding infeasible t-statistic as

tinf , it is straightforward to show that tinf has a standard normal limiting distribution under the

null hypothesis H0, irrespective of whether Assumption S or Assumption W holds. Moreover,

under Gaussianity this would be an efficient test (among αy, αx invariant tests) whenever ρxy 6= 0.

Note that including εxt as a regressor reduces the error variance from σ2
y in (1) to σ2

y(1 − ρ2
xy)

in (4); that is, with knowledge of φ we can essentially subtract off the part of the innovation

to returns that is correlated with the innovation to the predictor variable, thereby delivering a

more powerful test. When ρxy = 0, tinf remains asymptotically efficient as incorporation of the

redundant regressor εxt has no effect in large samples.

3.2 Feasible Statistics

We now detail some simple feasible tests and informally discuss their properties.

3.2.1 A standard t-statistic

The standard t-statistic based on (1) is effectively based on an OLS regression that omits zxt

from (5). Denoting this statistic as t, it is straightforward to show that t has a standard normal

limiting null distribution under Assumption W for any value of ρxy, and thus has the potential

for nuisance parameter free inference in this world. With respect to the DGP in (4), t is based on

a correctly specified regression when ρxy = 0, but when ρxy 6= 0, the regression omits a relevant

regressor; while this does not affect the limiting null distribution, t will be inefficient relative to

the infeasible test in the ρxy 6= 0 case. Under Assumption S, t has a standard normal limit null

distribution provided ρxy = 0, in which case it is also efficient. When ρxy 6= 0, however, its limit

null distribution depends on ρxy and c, and we would also expect the resulting test to be highly

inefficient in this strongly persistent case, due to the lack of any proxy for εxt in the underlying

regression.

3.2.2 A variant t-statistic

Before considering a statistic that includes a direct proxy for εxt, we also outline a variant of the

standard t-statistic that might be considered more appropriate in the case of strongly persistent

xt. The standard t-statistic regression (1) is equivalent to regressing OLS demeaned yt on OLS

demeaned xt, which implicitly uses x̄−1 := (T − 1)−1
∑T

t=2 xt−1 = Op(T
1/2) as an estimate of
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αx. A natural alternative to consider in the strongly persistent xt context is a generalised least

squares [GLS]-type demeaning for xt, using x1 = Op(1) as an estimator for αx instead of x̄−1.

We therefore consider a t-statistic associated with the OLS estimate of β in the model

(yt − ȳ) = β(xt−1 − x1) + vt (6)

which we denote by t′. As with t, the asymptotic null distribution of t′ will depend on ρxy and c

when xt is strongly persistent. Under weakly dependent xt, the null limit distribution of t′ will

depend on the (unknown) distribution of s1, hence the statistic is only designed for use in the

strongly persistent world (in contrast to t).

3.2.3 A t-statistic based on using a proxy measure for εxt

Given that εxt is unobservable, we might consider if it is possible to obtain a proxy measure for εxt.

There are a number of ways in which this could be done, including the Bonferroni-based method

advocated in CY. Here we consider an alternative approach based on including a covariate zxt

in (5) that acts as a direct proxy for εxt in (4). We will also focus our discussion for the present

on the case of Assumption S where xt is strongly persistent, as this is the most problematic case

where the standard statistic t has a non-pivotal limiting distribution. An obvious approach to

obtaining a proxy for εxt is to assume a particular value for the local-to-unity parameter c, say

c̄; we would then construct zxt = xt − (1 − c̄T−1)xt−1 (assuming αx = 0 for simplicity). If it

happened to be the case that c̄ = c, then zxt = εxt and we obtain the asymptotically standard

normal and efficient test, tinf . However, when c̄ 6= c the critical values for this test will depend on

both ρxy and c, and it will no longer be an efficient test, with power being a (decreasing) function

of the distance |c− c̄|. This clearly poses a problem as c cannot be consistently estimated.

An obvious proxy for εxt is the OLS estimate, ε̂xt say, obtained from an OLS regression of ∆xt

on a constant and xt−1. However, setting zxt = ε̂xt in (5) runs into the problem that zxt is exact

orthogonal to the predictive regressor xt−1. The estimate of β from such a fitted model is then

numerically identical to that which would be obtained if zxt was omitted from (5). Moreover,

the corresponding statistic is approximately 1/
√

1− ρ2
xy times the simple t-statistic, t, and so

the inference drawn from such a test would essentially be identical to that from t, hence using

the proxy regressor ε̂xt delivers no benefit.

An alternative method for obtaining a proxy for εxt, which takes account of a strongly persis-

tent autoregressive structure in estimating the intercept term αx, is to use a GLS-type estimator

of αx as in t′. To that end, consider regressing ∆xt on (xt−1−x1), and denote the residuals from

this fitted regression by ε̃xt.
1 Then consider setting zxt = ε̃xt in (5). In contradistinction to the

1Notice that this is based on the GLS-type estimator for αx that would obtain on assuming that c = c̄ = 0.
We also investigated choices of the GLS demeaning parameter, c̄, other than c̄ = 0 but found very little difference
in finite samples from the results given in this paper for c̄ = 0.
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OLS-based proxy regressor ε̂xt, the GLS-based proxy regressor ε̃xt is not orthogonal to xt−1. This

lack of orthogonality raises the potential for ε̃xt to act as a useful proxy for εxt in the strongly

persistent case, and we consider the corresponding t-statistic, t∗, in what follows. As we will

establish in section 3.3, the limiting null distribution of t∗ depends on both ρxy and c in the case

where xt is strongly persistent (Assumption S), although this issue notwithstanding, we might

anticipate that this procedure could deliver decent power performance due to the inclusion of

a proxy for εxt. Under weak dependence of xt (Assumption W ), because st and s1 are both of

Op(1), the asymptotic distribution of ε̃xt, and therefore that of t∗, will depend on the distribution

of s1 (as with t′).

3.3 Asymptotic Distributions of the Feasible Statistics

In Theorem 1 we now report the asymptotic distributions of the t, t′ and t∗ statistics under both

the null and local alternatives for the case where xt is strongly persistent. In Theorem 2 we

subsequently present the corresponding limit for t in the case where xt is weakly dependent.

Theorem 1. Let yt and xt be generated according to the model in (1) -(2) under the conditions

stated in Section 2 and let Assumption S hold. Then, as T →∞, under Hg,S:

t ⇒ gσx
σy

√∫ 1

0
W̄1c(r)2dr +

∫ 1

0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫ 1

0
W̄1c(r)2dr

=: S(gσx/σy, ρxy, c)

t′ ⇒ gσx
σy

∫ 1

0
W̄1c(r)

2dr√∫ 1

0
W1c(r)2dr

+

∫ 1

0
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫ 1

0
W1c(r)2dr

=: S ′(gσx/σy, ρxy, c)

t∗ ⇒ gσx
σy

√∫ 1

0
W̄1c(r)2dr√
1− ρ2

xy

+

∫ 1

0
W̄1c(r)dW2(r)√∫ 1

0
W̄1c(r)2dr

+
ρxy

√∫ 1

0
W̄1c(r)2dr

∫ 1

0
W1c(r)dW1(r)√

1− ρ2
xy

∫ 1

0
W1c(r)2dr

=: S∗(gσx/σy, ρxy, c)

where W1(r) and W2(r) are independent standard Brownian Motions, W̄1c(r) := W1c(r) −∫ 1

0
W1c(s)ds with W1c(r) :=

∫ r
0
e−(r−s)cdW1(s).

Remark 2. The results in Theorem 1 highlight that for all three of the statistics considered

the offset seen in their limiting distributions under the local alternative Hg,S, and hence their

asymptotic local power, is a function of a common deterministic offset term, gσx/σy, in each

case weighted by a different statistic-specific stochastic offset term. Under the null hypothesis,

H0, the asymptotic distributions of all three statistics are non-standard and depend on both ρxy

and c. ♦

Theorem 2. Let yt and xt be generated according to the model in (1) -(2) under the conditions
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stated in Section 2 and let Assumption W hold. Then, as T →∞, under Hg,S:

t ⇒ gσx
σy

1√
1− φ2

+N(0, 1) =:W(gσx/σy, φ)

where N(0, 1) denotes a standard normal variate.

Remark 3. We do not present the corresponding limiting distributions for t′ and t∗ because,

as discussed previously in sections 3.2.2 and 3.2.3, these depend on the distribution of s1. The

weighted test statistic, twt, which we will subsequently develop in section 4 is designed such

that it never selects (i.e. gives zero weight to) t′ or t∗ in large samples under Assumption W

and, hence, we will not need the limiting distribution of either t′ or t∗ to establish the limiting

distribution of twt under Assumption W . ♦

Remark 4. Notice that, in contrast to what was seen under Assumption S, the asymptotic local

power offset for t under Assumption W is purely non-stochastic being a (deterministic) function

only of g, σx, σy and φ. Under H0, t is seen to have a standard normal limiting distribution. ♦

3.4 Asymptotic Critical Values

Considering the case of strong dependence in Theorem 1 above, under H0, the critical values of

t, t′,and t∗ depend on the unknown parameters ρxy and c. At a practical level and as we will

show below, ρxy can be consistently estimated so this dependence is easily dealt with. More

important is the dependence on c, which cannot be dealt with as easily because c, unlike ρxy, is

not consistently estimable. We therefore adopt a scheme for simulating critical values that will,

by design, yield asymptotically conservative tests. We will illustrate this in the context of t and

its null limit distribution S(0, ρxy, c), but the same approach can be used for t′ and t∗, and their

respective null limit distributions, S ′(0, ρxy, c) and S∗(0, ρxy, c). For expository purposes we will

focus attention on upper-tail critical values relevant for upper-tailed tests. The corresponding

procedure for lower-tailed (or two-tailed) tests can be obtained in an entirely analogous fashion,

or simply by using −xt−1 rather than xt as the predictor variable and carrying out upper-tailed

tests as outlined below.

The steps to obtaining the conservative critical value are as follows:

1. For a chosen value of ρxy, simulate the null distribution S(0, ρxy, c) for different c across

an interval c ∈ [0, cmax].

2. At each value of c, compute the α-level upper-tail critical value, cvα(ρxy, c) say.

3. Set the α-level critical value for t equal to cvα(ρxy) := maxc∈[0,cmax] cvα(ρxy, c).
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Using cvα(ρxy) will yield a correct α-level sized test when c = arg maxc∈[0,cmax] cvα(ρxy, c),

and give a conservatively sized test for other values of c. We simulated critical values in

this manner for all three tests, approximating the Brownian motion processes in the limit-

ing functionals using IIDN(0, 1) random variates, and with the integrals approximated by

normalised sums of 1,000 steps, with 20,000 replications. This was carried out for values of

ρxy ∈ [−0.950,−0.925,−0.900, ..., 0.900]; we set cmax = 50 and evaluated the critical values for

c ∈ [0, 2, 4, ..., 50] with α = 0.05 and α = 0.10. For most values of ρxy, arg maxc∈[0,cmax] cvα(ρxy, c)

is obtained for c much smaller than cmax; for example, with ρxy = −0.9, it is obtained at c = 0

for both values of α.

To automate selection of an appropriate critical value for a given value of ρxy, we calculated

a response surface by regressing cvα(z) on [1, z, z2, ..., z8] with z = ρxy for the 75 data points

corresponding to the grid of values for ρxy. The response surface critical value is the fitted value

from this regression. The response surface coefficient estimates can be found in Table 1, along

with those for t′ and t∗, denoted cv′α(ρxy) and cv∗α(ρxy), respectively. In practice, the response

surface critical values can be calculated by substituting the unknown correlation parameter ρxy

with a consistent estimate. To that end, we suggest using the estimator

ρ̂xy :=

∑T
t=2 ε̂xtε̂yt√∑T

t=2 ε̂
2
xt

∑T
t=2 ε̂

2
yt

(7)

where ε̂yt are the OLS residuals from regressing yt on a constant and xt−1, and where it is recalled

from section 3.2.3 that ε̂xt denote the OLS residuals from regressing ∆xt on a constant and xt−1.

It is straightforward to show that ρ̂xy is a consistent estimator of ρxy under either Assumption

S or Assumption W . In what follows, we denote tests based on comparison of t, t′ and t∗ with

their asymptotically conservative critical values by tC , t′C and t∗C , respectively.

3.5 Finite Sample Simulations

We now perform Monte Carlo simulation experiments to compare the finite sample size and power

of the tC , t′C and t∗C tests for T = 200 (other sample sizes gave qualitatively similar results).

We generate (1)-(3) with (e1t, e2t)
′ ∼ IIDN (0, I2) and drawing s1 as a standard normal variate,

setting αy = αx = 0 without loss of generality. Although our theoretical results concerning

t′C and t∗C are only established under Assumption S, in the simulations we deliberately blur

the distinction between strong persistence and weak dependence of the predictor by setting

φ = 1 − c/200 and varying c ∈ [0, 1, 2, ..., 200], such that xt varies between a random walk and

a white noise process. We conduct upper-tailed tests at the nominal 0.05 level, using critical

values obtained from evaluating the estimated response surfaces from Table 1 at ρ̂xy of (7), with
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ρ̂xy calculated separately for each Monte Carlo replication.2 The simulation results reported in

this section and in section 5 are all based on 20,000 Monte Carlo replications.

3.5.1 Finite Sample Size Properties

Figure 1 reports the simulated sizes of tC , t′C and t∗C across c for different values of ρxy. By

way of a benchmark for size, we also include sizes for a test that compares the statistic t with

its asymptotic critical value in the weak dependence case, i.e. 1.645 from N(0, 1); this test is

denoted tN . Looking at panel (a) where ρxy = −0.95, we see that tN is very badly over-sized for

small c, while its empirical size gets closer to the nominal 0.05 level for large c. Its counterpart

tC , which uses the conservative response surface critical values, has near-correct empirical size

with c = 0, but for c > 0 displays sizes which lie below the nominal level and increasingly so

as c increases. Interestingly, although the response surface critical values are obtained under

Assumption S, empirical sizes for c = 50 through to c = 200 seem to vary very little. The

empirical sizes of t′C and t∗C appear roughly correct for small c, and while, like tC , they fall below

the nominal level for larger c, the rate at which this occurs is much less severe. Between t′C and

t∗C , it is the former which holds on to size better for large values of c, which may have implications

for the relative power of the two in this region. The results for ρxy = −0.9 in panel (b) are very

similar to those for ρxy = −0.95. In panel (c) where ρxy = −0.5, while tN remains over-sized,

the other three tests tend to be less under-sized for large c, particularly t′C . When ρxy = 0 in

panel (d), all four tests display decent empirical size properties across c. As we would expect,

the sizes for tC and tN are similar here. For the positive values of ρxy in panels (e) and (f), all the

tests are under-sized for small c, while the sizes for tN , tC and t′C all lie reasonably close to the

nominal level for larger c. However, the empirical size of t∗C diverges badly outside of the small

c region, indicating that the asymptotic critical values obtained under the strong persistence

assumption for c up to cmax are not appropriate here. Overall then, for negative correlation,

our preference regarding finite sample size control would rest with t′C for larger c, while we are

ambivalent between t′C and t∗C for smaller c. For positive correlation, t∗C would appear to be best

avoided unless c is small.

3.5.2 Finite Sample Power Properties

Next, we plot simulated powers across g (≥ 0), with β = g/200, for different values of ρxy and

c. Figure 2 considers ρxy = −0.95. First, we should note the powers of tN are fairly meaningless

for comparison purposes outside of panel (f) where c = 200, due to its over-size discussed in

2Lower-tailed tests can also be considered, and our simulation results regarding the size and power of tC , t′C ,
t∗C , twC and twtC are also appropriate for lower-tail tests, provided the tests are either simply applied to −xt−1 using
the asymptotic critical values from section 3.4, or are applied to xt−1 but using the critical values −cvα(−ρxy),
−cv∗α(−ρxy), −cv∗∗α (−ρxy), −cvwα (−ρxy, 2) and −cvwtα (−ρxy, 2, 0.01), respectively (with ρ̂xy again replacing ρxy
in the implementation of the tests).
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section 3.5.1. Looking then at tC , t′C and t∗C , we find that tC and t∗C are the most powerful tests

when c = 0, with t′C having somewhat lower power. For c = 10, t∗C and t′C now have similar

power levels and have substantially greater power than tC . The same is largely true for c = 25.

For c = 50, 100 and 200, however, the power of t∗C falls well behind that of t′C . Note that for

c = 200, tN has correct size and, not surprisingly given the under-sizing seen in the other tests,

the most power. On the basis of these power simulations alone, we are fairly ambivalent between

t′C and t∗C representing the best performing test across small to moderate values of c, yet we

hold a distinct preference for t′C for the larger values of c. With ρxy = −0.9 (Figure 3), we draw

similar conclusions, and again when ρxy = −0.5 (Figure 4). For ρxy = 0 (Figure 5), it becomes

hard to draw any firm conclusions regarding the relative test rankings, since the power profiles

are generally very similar across c (the only real exception to this is the lower power of t′C when

c = 0). When the correlation is positive (Figures 6 and 7), the tests again behave similarly when

c is small (again excepting t′C when c = 0), while for large c the tC , t′C and tN tests have broadly

similar power profiles, while the power for t∗C is rendered uninformative because of its extreme

over-size for large c.

4 Weighted Tests

Given the size and power simulation results reported in section 3.5, it would seem sensible

to envisage a testing procedure based on suitably combining the statistics t′ and t∗. Such a

combination should involve both the statistics when c is of small to moderate magnitude, since

neither of the t′C and t∗C tests are really dominant in terms of power across this region of c taken

as a whole, and so it makes sense to permit both statistics to have the opportunity to provide

evidence against the null. For larger c, the combination should revert to the t′ statistic alone,

because of the better power of the t′C test, and the far superior size control when the correlation

is positive.

An obvious way to achieve this is to consider a simple weighting scheme based on the p-value

from a unit root test applied to xt which has the usual property that the further is the dominant

autoregressive root of xt from unity, the closer is the p-value of the unit root test to zero, other

things being equal. To that end, consider a generic unit root statistic, UR, which has the limiting

distribution SUR(c) under Assumption S. Denote by pUR the p-value associated with UR using

the limiting distribution for c = 0, SUR(0). We require UR to be such that, under Assumption

S, this p-value satisfies pUR =
∫ UR
−∞S

UR(0)⇒
∫ SUR(c)

−∞ SUR(0) =: pUR(SUR(c)). Notice that when

c = 0, pUR ⇒ pUR(SUR(0)) = U(0, 1). Based on pUR we can then define a weighted statistic,

denoted tw, as

tw := (pUR)λt∗ + {1− (pUR)λ}t′ (8)

where λ is a positive constant. So, for small c, pUR will be non-zero and tw will combine inference
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from both t∗ and t′. For larger c, pUR will tend to be smaller (with xt appearing less persistent)

and so the majority of the weighting in tw will shift to t′. For very large c, pUR is essentially

zero, at which point tw coincides with t′.

Theorem 3. Under the conditions of Theorem 1,

tw ⇒ (pUR(c))λS∗(gσx/σy, ρxy, c) + {1− (pUR(c))λ}S ′(gσx/σy, ρxy, c)

=: SwUR(gσx/σy, ρxy, c, λ).

In addition to tw, we also consider a further modification designed to potentially improve

power in cases of low persistence. Consider the case where the xt process is white noise; here,

the tN test is valid, and Figures 2-7 highlight an attractive power profile for this test - see the

c = 200 results. (For negative ρxy, the power results for the tC test in the figures are adversely

impacted by the fact that the statistic t is being compared with conservative critical values,

which are dominated by the behaviour of t at c = 0.) It makes sense, therefore, to consider

whether additional power can be harnessed from integrating the statistic t into the weighted test

when c is very large. A refinement of tw can therefore be considered where a switch into t occurs

for very large c. Specifically, we consider a statistic of the form

twt := twI(pUR > τ) + tI(pUR ≤ τ)

where I(.) is the indicator function and τ > 0. Here twt is the same as tw for values of pUR

above a user-specified cut-off value τ ; otherwise it is simply t. The motivation here is that if τ

is chosen suitably small, then for small c, twt will typically be tw rather than t, so that t cannot

inflate the critical values of twt very much in this region. Then, for large c, when twt is typically

t, twt will be using less conservative critical values than those required to control the size of tC ,

thereby improving power in this region.

Theorem 4. Under the conditions of Theorem 1,

twt ⇒ Sw(gσx/σy, ρxy, c, λ)I(pUR(c) > τ) + S(gσx/σy, ρxy, c)I(pUR(c) ≤ τ)

=: SwtUR(gσx/σy, ρxy, c, λ, τ).

Remark 5. It can be seen from Theorem 3 and Theorem 4 that the asymptotic distributions of

tw and twt depend in general on ρxy, c, the choice of λ, and on the specific unit root test statistic,

UR, used in defining the weights. Additionally, the limiting distribution of twt depends on the

choice of τ . ♦

Remark 6. Under the conditions of Theorem 2, so that Assumption W holds, it holds trivially

that twt and t are asymptotically equivalent, by virtue of that fact that the value of τ used in

(8) is a positive constant. Consequently, twt ⇒W(gσx/σy, φ). ♦
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We next consider how to obtain simulated critical values that will yield asymptotically con-

servative tests based on tw and twt. These critical values will depend on the specific choice made

for the unit root statistic, UR. In what follows we report results for the case where UR is cho-

sen to be the familiar local-GLS detrended Dickey-Fuller unit root test statistic of Elliott et al.

(1996) for the choice of c̄ = 0; that is, the t-statistic for φ = 0 associated with the OLS estimate

of φ in the model

∆xt = φ(xt−1 − x1) + vt. (9)

We will denote this t-statistic by DF in what follows so that under this choice UR = DF .

Well known results show that, under Assumption S, DF ⇒
∫ 1

0
W1c(r)dW1c(r)√∫ 1

0
W1c(r)2dr

=: SDF (c), and

the associated p-value, pDF , satisfies the generic requirements for UR stated above. We have

chosen DF because it is both simple to compute and we found that it gave rise to weighted

tests with superior finite sample properties to other commonly used unit root tests, including

the corresponding OLS detrended Dickey-Fuller unit root test. In what follows for UR = DF

we set λ = 2 and τ = 0.01; we denote the associated asymptotic null distributions of tw and twt

as SwDF (ρxy, c, 2) and SwtDF (ρxy, c, 2, 0.01), respectively.3

Given the foregoing choice for UR, the next step is to simulate the limit Dickey-Fuller p-values.

This could be done using a suitable bootstrap method, but here we outline a self-contained

simulation-based method. To that end, we simulated SDF (0) using IIDN(0, 1) random variates,

and with the integrals approximated by normalized sums of 1000 steps, with 20000 replications,

and then calculated the numerical approximation to pDF (x) for x ∈ [−5,−4.95,−4.90, ..., 3]. To

automate selection of an appropriate asymptotic p-value for a given value of x, we once again

calculated a response surface by regressing pDF (x) on [1, z, z2, ..., z11] with z = 1/(1 + e−x) (161

data points), the function z being a convenient choice given that we are approximating a cu-

mulative density function. The response surface p-value is the fitted value from this regression,

and the response surface coefficient estimates can be found in Table 2, denoted pDF (x). In prac-

tice, the response surface p-value can be calculated using x = DF . Calculation of conservative

asymptotic critical values for the tw and twt statistics is then carried out in exactly the same

manner as in calculating those for t, t′ and t∗ in section 3.4 above, but based on SwDF (ρxy, c, 2)

and SwtDF (ρxy, c, 2, 0.01). The response surface coefficient estimates for the ρxy-dependent critical

values can be found in Table 2, denoted cvwα (ρxy, 2) and cvwtα (ρxy, 2, 0.01), respectively. We de-

note the tests based on comparison of tw and twt with their asymptotically conservative critical

values by twC and twtC , respectively.

Remark 7. Thus far we have assumed that εt is a vector IID process. It is straightforward to

3The choices of λ = 2 and τ = 0.01 do not arise from analytical considerations; they were made on the
basis of experimentation and finite sample size and power simulations. Other values can be used, but, somewhat
inevitably, a trade-off will arise with respect to the performance of the tests across different parameter settings
in the DGP.
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modify the testing procedures discussed in this paper to allow for weak (stationary) autocorre-

lation and/or certain forms of heteroskedasticity in εt. For the former, the limiting null results

given to date will continue to hold when the innovation process εxt in (2) is replaced by a station-

ary autoregressive process of the form vxt = ψ1vx,t−1 +ψ2vx,t−2 + ...+ψpvx,t−p + εxt, provided the

regressions involving xt underlying the computation of the residuals ε̂xt and ε̃xt defined in section

3.2.3 and the unit root regression in (9) from which the statistic DF is obtained are augmented

with the additional regressors, ∆xt−1,∆xt−2, ...,∆xt−p. In practice, p will be unknown and the

number of lagged difference regressors to include can be determined using any of the standard

model selection criteria, for example BIC. One can also weaken the IID assumption to allow for

conditional heteroskedasticity in the innovations without altering the asymptotic null properties

of our proposed test statistics provided, as in Kostakis et al. (2015, p.1516), one uses White

standard errors rather than OLS standard errors in constructing each of the t, t′ and t∗ statistics

defined in section 3. Indeed, when basing the t, t′ and t∗ statistics on White standard errors,

unconditional heteroskedasticity in εyt of the form considered in, for example, Assumption 1 of

Breitung and Demetrescu (2015,p.359) can also be permitted. Finally, it should be noted that

the presence of either stationary autocorrelation or heteroskedasticity will alter the limiting local

power properties of the t, t′, t∗, tw and twt statistics (and the modifications of these discussed

above) as they also do other tests in the extant literature including the tests of CY, Kostakis et

al. (2015) and Breitung and Demetrescu (2015). ♦

In the next section we examine the finite sample size and power properties of our proposed

weighted tests and compare them with the leading tests in the literature, namely those of Camp-

bell and Yogo (2006), Kostakis et al. (2015) and Breitung and Demetrescu (2015).

5 Finite Sample Simulations

Figures 1 and 2-7 also show the simulated finite sample sizes and powers of twC and twtC for

the same simulation design settings as were used in section 3.5, and again based on upper-tail

tests conducted at the nominal 0.05 level using the estimated response surfaces from Table 1,

again evaluated at ρ̂xy of (7). Both ρ̂xy and the Dickey-Fuller p-value, pDF (obtained from

the estimated response surface in Table 1), were calculated separately in each Monte Carlo

replication. Examining Figure 1, and considering first twC , we see a striking similarity between

its size behaviour and that of t′C . Only for ρxy = 0.9 in panel (f) do their sizes appear to differ

in any way, with twC being comparatively more under-sized across c. A notable feature is that for

the positive values of ρxy, t
w
C does not exhibit the large over-sizing outside of small c associated

with t∗C . The reason underlying this is that for the larger c values considered, pDF will tend

to be small, with the result that t∗ will generally receive a low weight in tw. As regards twtC ,

it has accurate size across c for all the negative values of ρxy considered, establishing it quite
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convincingly as the most reliably sized test in those cases. Elsewhere, it has a tendency to some

under-sizing for small c, although since this is generally a feature of all the other tests, twtC is still

very competitive. Comparing twC and twtC , the main feature is that for the larger values of c, twtC
is notably less under-sized, reflecting its switch into t alone when pDF is small. Interestingly, twC
and twtC are the only approximately correctly sized tests when ρxy = 0.9 and c = 0.

Figure 2 also graphs the powers of twC and twtC for ρxy = −0.95. When c = 0 (ignoring tN due

to its over-size) we see that twC and twtC emerge as comfortably the most powerful tests, with both

well exceeding the power of the third placed tests tC and t∗, and there is little to choose between

twC and twtC on power here. For c = 10 and c = 25, t′C , t∗C , twC and twtC show broadly similar power

profiles. However, once c = 50 it is twtC that emerges as the most powerful test, with twC tying for

second place with t′C . These characteristics arise because tw is now placing most weight on t′,

while twt is now very regularly switching into t. The same rankings are seen for c = 100 and 200,

and here we also see that the power advantage that twtC holds over twC increases with c. Notice

that when c = 200, twtC has power approaching the levels associated with tN (which is correctly

sized here). These same comments regarding power ranking also hold when ρxy = −0.9 (Figure

3) and where ρxy = −0.5 (Figure 4). When ρxy = 0 (Figure 5) neither twC or twtC dominates the

best of the other tests, but the power differences involved are really very modest. For ρxy = 0.5

(Figure 6), it is arguably twtC that is the best performing test overall, albeit by a small margin.

For the larger c values, we see that twtC again outperforms twC . Finally, for ρxy = 0.9 (Figure 7)

when c = 0, twC and twtC are easily the best performing tests, by virtue of the other tests having

very low empirical size here, as discussed above. For large c, the dominance of twtC over twC is

quite evident.

On the basis of all of our simulation results for the tests considered, it seems reasonable to

conclude that twtC offers the best overall combination of finite sample size control and provision

of power. We therefore next compare twtC with the leading predictability tests currently available

in the literature. Specifically, the tests we compare twtC against are CY’s Q test (one-sided, upper

tail), the instrumental variable test of Breitung and Demetrescu (2015) using sine and fractional

instruments, denoted BD (recall that this test can only be run as a two-sided test), and the

IVX test of Kostakis et al. (2015), with IV X1 and IV X2 denoting one-sided (upper tail) and

two-sided tests, respectively. All tests were implemented using settings appropriate for IID

errors (we fixed the AR lag to one in Q, and used short run variance estimators in IV X, setting

Mn = 0 in the notation of Kostakis et al., 2015). As discussed in Kostakis et al. (2015, p.1514)

the IVX instrument does not need to be demeaned because the slope estimator in the predictive

regression is invariant to whether the instrument is demeaned or not. In calculating the IV X1

and IV X2 tests we implemented the finite-sample correction factor outlined in Kostakis et al.

(2015, p.1516). Figures 8 and 9-14 graph the simulated finite sample empirical sizes and powers

of these tests together with those of twtC for the same DGP settings as were used in section 3.5.

All tests were run at the nominal 0.05 (asymptotic) significance level and the plots for twtC are

16



reproduced from Figures 1 and 2-7 for convenience.

The standout feature from Figure 8 is that CY’s Q test is very badly over-sized, for any value

of ρxy 6= 0, unless c is small. The invalidity of the Q test for weakly stationary xt is clearly

reflected in Figure 8 as c becomes large. Another prominent feature is that the lower-tailed

IV X1 test is badly over-sized for negative ρxy and under-sized to a similar degree for positive ρxy

when c is small. Of all of the tests considered, BD arguably appears to offer the most precise

finite sample size control overall, followed by twtC and IV X2. Among the one-sided tests it is

fair to conclude that twtC offers the best size performance, in particular that it avoids the issue of

over-sizing seen with the other one-sided tests.

Figure 9 presents the powers for ρxy = −0.95. For c = 0 (ignoring IV X1 due to its significant

over-size discussed above) we see that twtC is generally the most powerful test, outperforming Q

for all but the larger values of g considered and easily dominating both IV X2 and BD. There

appears to be little to choose between twtC , Q and IV X2 for c = 10 and c = 25, BD having

comparatively very low power here. IV X1 and twtC are the best performing tests for the larger

values of c considered (IV X1 no longer being over-sized), and here there is relatively little to

separate them. It is also interesting to note that Q is both over-sized and has poor power here.

The results for ρxy = −0.9 in Figure 10 are very similar to those for ρxy = −0.95, and so similar

comments apply. When ρxy = −0.5 (Figure 11), Q emerges as the most powerful test when c = 0

(IV X1 is still over-sized here for small c) but is only marginally more powerful than twtC . For

moderate and large values of c, IV X1 and twtC provide the highest powers and are similar to each

other. Again, Q has poor properties for large c. For ρxy = 0 (Figure 12) there is generally little

to choose between twtC , Q and IV X1. When ρxy = 0.5 (Figure 13), arguably it is twtC that has

the best power performance overall. A similar claim could legitimately be made when ρxy = 0.9

(Figure 14), particularly given the performance of twtC for c = 0.

Based on these simulation results, we conclude that twtC offers appealing size and power prop-

erties when compared to the leading currently available testing procedures. It would be fairly

näıve to believe, a priori, that any one single test procedure would have the best finite sample

size and power properties across the full constellation of settings that we have examined, i.e. a

wide spectrum of values of the persistence level in the predictive regressor and the correlation

coefficient between the innovations in the model. However, twtC does appear to perform consis-

tently well in terms of both size and power across these settings, never seemingly showing a

substantial weakness in either dimension, something which appears to be rather less true of its

extant competitors.

6 An Empirical Illustration

To illustrate how our proposed tests might behave in practice, we apply them to the monthly

U.S. annual equity series analysed in Welch and Goyal (2008), using updated data for the period
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1970:1-2017:12 (T = 576) which is available at http://www.hec.unil.ch/agoyal/. Our dependent

variable yt is the the S&P 500 value-weighted log excess return and for xt we consider thirteen

putative predictor variables: the dividend price ratio, earnings-price ratio, dividend-payout ratio,

dividend yield, default yield spread, long-term yield, default return spread, stock variance, net

equity expansion, inflation rate, Treasury bill rate, term spread and the book-to market value

ratio. Detail of the construction of these predictors can be found in Welch and Goyal (2008).

Our test procedures tC , t′C , t∗C , twC and twtC , employing UR = DF , λ = 2 and τ = 0.01, are applied

to these series with the number of lagged difference terms in ∆xt added to the underlying OLS

regressions for ε̂xt and ε̃xt and DF determined using BIC selection starting from a maximum value

of pmax = 12. Critical values for these tests were determined using the same method as detailed

previously in connection with the finite sample simulation results. We also apply BD, IV X1

and IV X2 and Q (the latter being one-sided, applied at the asymptotic 0.05 level). The IV X

statistic was calculated using long run variance estimators with Mn =
⌊
T 1/3

⌋
in the notation of

Kostakis et al. (2015), and Q was implemented with BIC lag selection from a maximum AR lag

order of pmax + 1.

Table 2 shows the results for those of the thirteen series where at least one of the nine tests

considered yields a rejection at the 0.10 level. There are five such cases: the dividend-price ratio

(denoted d/p), dividend yield (d/y), default return spread (dfr), inflation rate (inf) and the

stock variance (svar). Here, we also report the values of ρ̂xy and pDF . We observe from Table

2 that for the strongly persistent predictors d/p and d/y, persistence being measured by pDF ,

evidence of predictability at the 0.10 level is found only by (at least one of) our new tests. Indeed,

for d/p, where in addition to strong persistence the value of ρ̂xy indicates a very high degree of

negative correlation, only our preferred weighted test, twtC , delivers a rejection. This fits nicely

into the sort of environment where our simulations showed that twtC will be more powerful than tC ,

t′C and t∗C . The remaining predictors dfr, inf and svar do not appear to be strongly persistent

since in each case pDF is close to zero. Here we see that tw is placing virtually all its weight on t′,

while in the case of dfr and svar, this low persistence further prompts the twt statistic to switch

into t. For dfr, this switch turns a 0.10-level non-rejection by twC into a 0.05 level rejection by

twtC . This again accords well with our simulation evidence which showed twtC to be more powerful

than twC under weak persistence. All of the tests considered show 0.05 level rejections for svar.

Notably, Q demonstrates 0.05 level rejections for all three of the non-persistent predictors -

unlike any of the other tests which manage rejections for at most two of these predictors (i.e.

tC , t∗C , and twtC ). We would speculate that the tendency of Q to be over-sized in the presence

of low-persistence predictors, as was observed in the simulation results in section 5, may partly

explain these findings. So, focussing on the outcomes of twtC in the context of the new procedures

introduced in this paper, we find that it uncovers at least as much evidence for predictability

in these series as any of its comparator tests, notwithstanding the more questionable evidence

arising from the Q test.
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7 Conclusions

In this paper we have developed new and easy to implement tests for predictability based on

simple to compute regression t-ratios. In particular, together with the standard t-ratio from

the OLS regression of returns on a constant and a lagged predictor, we have discussed: (i) a t-

ratio on the lagged predictor when augmenting the basic predictive regression with a GLS-based

estimate of the current period innovation driving the predictor (an infeasible version of this test

using the actual current period innovation is optimal when the predictor is endogenous), and (ii)

a t-ratio from a variant of the standard predictive regression where the OLS demeaned returns

are regressed on the GLS demeaned lagged predictor. We have proposed a feasible method for

obtaining (conservative) asymptotic critical values for the tests based on each of these statistics

and associated response surfaces have been provided. Finite sample simulations have been used

to assess the size and power of these three tests across different degrees of predictor persistence

and degrees of innovation endogeneity. Subsequently, to develop procedures which display good

size and power properties regardless of the degree of persistence and endogeneity, we have also

proposed tests based on weighted combinations of the t-ratios in (i) and (ii), the weights obtained

according to the p-values from a standard Dickey-Fuller-type unit root test on the predictor and

designed to place more weight on the test of (ii) in the low persistence environment. A further

modification combines the weighted test with the standard t-ratio which reverts to the latter

under very low persistence. The modification in particular yields a test procedure that compares

very favourably with the leading tests for predictability in the literature, offering arguably the

best trade-off of in terms of finite sample size and power properties overall across a broad diversity

of persistence and endogeneity settings. In an empirical application to a well-known data set

of US stock returns and putative predictors, we uncover evidence of predictability using our

new tests for a number of predictors with significantly differing persistence and endogeneity

characteristics that is not matched by competitor procedures with known reliable size.
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A Appendix

Proof of Theorem 1: In what follows we may set αy = αx = 0; this is without loss of

generality in view of the fact that all of the test statistics we consider are exact invariant to

these parameters. We adopt the generic notation of (5), (6) and (9), denoting OLS estimators

of the parameters of these models as α̂, β̂, δ̂ and φ̂, as appropriate. Summations are taken over

t = 2, ..., T , and integrals over [0, 1], unless otherwise stated.

We will make use the following weak convergence results:

T−1/2

bTrc∑
t=1

e1t ⇒ W1(r), T−1/2

bTrc∑
t=1

e2t ⇒ W2(r)

where [W1(r), W2(r)]′ is a bivariate standard Brownian Motion process. Then we can also write

T−1/2

bTrc∑
t=1

εxt ⇒ σxW1(r)

T−1/2

bTrc∑
t=1

εyt ⇒ σy

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

and, under Assumption S, T−1/2xbTrc ⇒ σxW1c(r) = σx
∫ r

0
e−(r−s)cdW1(s).

(i) We can write

t =
T−1

∑
(xt−1 − x̄−1)yt√

σ̂2
vT
−2
∑

(xt−1 − x̄−1)2

where x̄−1 := (T − 1)−1
∑
xt−1, σ̂2

v := T−1
∑
v̂2
t and v̂t := yt − α̂− β̂xt−1. Standard results, and

the fact that σ̂2
v

p→ σ2
y, establish that

t⇒ gσx
σy

√∫
W̄1c(r)2dr +

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫

W̄1c(r)2dr

(ii) Here, we have

t′ =
T−1

∑
(xt−1 − x1)(yt − ȳ)√

σ̂2
vT
−2
∑

(xt−1 − x1)2

where σ̂2
v := T−1

∑
v̂2
t and v̂t := yt − α̂ − β̂xt−1. Then σ̂2

v

p→ σ2
y, T

−2
∑

(xt−1 − x1)2 ⇒
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σ2
x

∫
W1c(r)

2dr, and

T−1
∑

(xt−1 − x1)(yt − ȳ) = T−1
∑

(xt−1 − x̄−1)(yt − ȳ)

= T−1
∑

(xt−1 − x̄−1)yt

⇒ gσ2
x

∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

Hence

t′ ⇒ gσx
σy

∫
W̄1c(r)

2dr√∫
W1c(r)2dr

+

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}√∫

W1c(r)2dr
.

(iii) We will use the following easily shown results. First, that T−1
∑

(yt − ȳ)2 p→ σ2
y and

T−1
∑
ε̃2xt

p→ σ2
x with ε̃xt := ∆xt − φ̂(xt−1 − x1). Next,

T φ̂ ⇒
∫
W1c(r)dW1c(r)∫
W1c(r)2dr

= c+

∫
W1c(r)dW1(r)∫
W1c(r)2dr

:= L(c)

T−1
∑

(xt−1 − x̄−1)ε̃xt = T−1
∑

(xt−1 − x̄−1){∆xt − φ̂(xt−1 − x1)}

= T−1
∑

(xt−1 − x̄−1)∆xt − T φ̂T−2
∑

(xt−1 − x̄−1)xt−1

⇒ σ2
x

∫
W̄1c(r)dW1c(r)− σ2

xL(c)
∫
W̄1c(r)

2dr

T−1
∑

(xt−1 − x̄−1)yt ⇒ gσx
∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

T−1
∑

ε̃xt(yt − ȳ) = T−1
∑

ε̃xt(gT
−1(xt−1 − x̄−1) + εyt − ε̄y)

= gT−2
∑

(xt−1 − x̄−1)ε̃xt + T−1
∑

ε̃xt(εyt − ε̄y)

= T−1
∑
{∆(xt − x1)− φ̂(xt−1 − x1)}(εyt − ε̄y) + op(1)

= T−1
∑

(εyt − ε̄y)∆xt + op(1)⇒ σxy

T−1
∑

v̂2
t = T−1

∑
{(yt − ȳ)− β̂

′
(xt−1 − x̄−1)− δ̂(ε̃xt − ε̃x)}2

= T−1
∑

(yt − ȳ)2 + β̂
′2
T−1

∑
(xt−1 − x̄−1)2 + δ̂

2
T−1

∑
ε̃2xt

−2β̂
′
T−1

∑
(yt − ȳ)(xt−1 − x̄−1)− 2δ̂T−1

∑
(yt − ȳ)ε̃xt + 2β̂

′
δ̂T−1

∑
(xt−1 − x̄−1)ε̃xt

+op(1)

= T−1
∑

(yt − ȳ)2 + δ̂
2
T−1

∑
ε̃2xt − 2δ̂T−1

∑
(yt − ȳ)ε̃xt + op(1)

⇒ σ2
y + (σxy/σ

2
x)

2σ2
x − 2(σxy/σ

2
x)σxy = σ2

y(1− ρ2
xy)
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using the fact that ε̃x = T−1
∑
ε̃xt = T−1

∑
∆(xt − x1)− T φ̂T−2

∑
(xt−1 − x1)⇒ 0. Then,[

β̂

δ̂

]
=

[ ∑
(xt−1 − x̄−1)2

∑
(xt−1 − x̄−1)ε̃xt∑

(xt−1 − x̄−1)ε̃xt
∑
ε̃2xt

]−1 [ ∑
(xt−1 − x̄−1)yt∑
ε̃xt(yt − ȳ)

]
[
T β̂

δ̂

]
=

([
T−1 0

0 T−1

][ ∑
(xt−1 − x̄−1)2

∑
(xt−1 − x̄−1)ε̃xt∑

(xt−1 − x̄−1)ε̃xt
∑
ε̃2xt

][
T−1 0

0 1

])−1

.

[
T−1

∑
(xt−1 − x̄−1)yt

T−1
∑
ε̃xt(yt − ȳ)

]

=

[
T−2

∑
(xt−1 − x̄−1)2 T−1

∑
(xt−1 − x̄−1)ε̃xt

T−2
∑

(xt−1 − x̄−1)ε̃xt T−1
∑
ε̃2xt

]−1 [
T−1

∑
(xt−1 − x̄−1)yt

T−1
∑
ε̃xt(yt − ȳ)

]
(A.1)

⇒

[
σ2
x

∫
W̄1c(r)

2dr σ2
x

∫
W̄1c(r)dW1c(r)− σ2

xL(c)
∫
W̄1c(r)

2dr

0 σ2
x

]−1

.

[
gσ2

x

∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σxy

]

=

 1

σ2
x

∫
W̄1c(r)2dr

−
∫
W̄1c(r)dW1c(r)−L(c)

∫
W̄1c(r)2dr

σ2
x

∫
W̄1c(r)2dr

0 1/σ2
x


.

[
gσ2

x

∫
W̄1c(r)

2dr + σxσy
∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σxy

]

=

 gσ2
x

∫
W̄1c(r)2dr+σxσy

∫
W̄1c(r)d{ρxyW1(r)+

√
1−ρ2xyW2(r)}

σ2
x

∫
W̄1c(r)2dr

− σxy
∫
W̄1c(r)dW1c(r)−L(c)

∫
W̄1c(r)2dr

σ2
x

∫
W̄1c(r)2dr

σxy/σ
2
x


The expression for T β̂ can be simplified as follows:

T β̂ ⇒ g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σ2
x

∫
W̄1c(r)2dr

− σxy
∫
W̄1c(r)dW1c(r)− L(c)

∫
W̄1c(r)

2dr

σ2
x

∫
W̄1c(r)2dr

= g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1− ρ2

xyW2(r)
}

σ2
x

∫
W̄1c(r)2dr

− σxy
(∫

W̄1c(r)dW1c(r)

σ2
x

∫
W̄1c(r)2dr

− L(c)

σ2
x

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxσyρxy

∫
W̄1c(r)dW1(r)

σ2
x

∫
W̄1c(r)2dr

−σxy
σ2
x

(
c+

∫
W̄1c(r)dW1(r)∫
W̄1c(r)2dr

− L(c)

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

− σxy
σ2
x

(
c− c−

∫
W1c(r)dW1(r)∫
W1c(r)2dr

)
= g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy
∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr
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Hence, using m to denote element [1,1] of the inverse matrix in (A.1), we find

t∗ =
T β̂√

T−1
∑
v̂2
t T

2m

⇒
g +

σxσy

√
1−ρ2xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy

∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr√

σ2
y(1−ρ2xy)

σ2
x

∫
W̄1c(r)2dr

=

[
g +

σxσy
√

1− ρ2
xy

∫
W̄1c(r)dW2(r)

σ2
x

∫
W̄1c(r)2dr

+
σxy
∫
W1c(r)dW1(r)

σ2
x

∫
W1c(r)2dr

]√
σ2
x

∫
W̄1c(r)2dr

σ2
y(1− ρ2

xy)

=
gσx
σy

√∫
W̄1c(r)2dr√
1− ρ2

xy

+

∫
W̄1c(r)dW2(r)√∫

W̄1c(r)2dr
+
ρxy

√∫
W̄1c(r)2dr

∫
W1c(r)dW1(r)√

1− ρ2
xy

∫
W1c(r)2dr

Proofs of Theorem 2, 3 and 4: The proofs of Theorems 2, 3 and 4 are entirely straightforward

and are therefore omitted, but are available from the authors on request.
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Table 2. Application to monthly U.S. stock index returns, 1970:1-2017:12.

Predictor ρ̂xy pDF tC t′C t∗C twC twt
C BD IV X1 IV X2 Q

d/p −0.99 0.48 1.34 1.06 4.02 1.74 1.74† 0.06 1.12 1.26
d/y −0.04 0.40 1.44† 1.25† 1.42† 1.27† 1.27 0.00 1.26 1.59
dfr 0.24 0.00 1.62†† 1.10 4.36†† 1.10 1.62†† 1.51 1.64† 2.68 ††

inf −0.07 0.01 −1.01 −0.99 −0.95 −0.99 −0.99 1.26 −1.11 1.24 ††

svar −0.31 0.00 −2.99†† −2.88†† −3.42†† −2.88†† −2.99†† 12.20†† −3.03†† 9.19†† ††

Note: † and †† denote rejection at the 0.10-level and 0.05-level respectively.
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(a) ρxy = −0.95 (b) ρxy = −0.9

(c) ρxy = −0.5 (d) ρxy = 0

(e) ρxy = 0.5 (f) ρxy = 0.9

Figure 1. Finite sample size of nominal 0.05-level tests, T = 200;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :

F.1



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 2. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 3. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 4. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
tN : , tC : , t′C : - - - , t∗C : , twC : , twt

C :

F.7



(a) ρxy = −0.95 (b) ρxy = −0.9

(c) ρxy = −0.5 (d) ρxy = 0

(e) ρxy = 0.5 (f) ρxy = 0.9

Figure 8. Finite sample size of nominal 0.05-level tests, T = 200;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 9. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 10. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 11. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -

F.11



(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 12. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 13. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.5;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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(a) c = 0 (b) c = 10

(c) c = 25 (d) c = 50

(e) c = 100 (f) c = 200

Figure 14. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = 0.9;
twt
C : , Q: , BD: , IV X1: , IV X2: - - -
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