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Abstract

We propose new tests for long-horizon predictability based on IVX estimation (see Kostakis et al.,
2015) of transformed regressions. These explicitly account for the over-lapping nature of the
dependent variable which features in a long-horizon predictive regression arising from temporal
aggregation. Because we use IVX estimation we can also incorporate the residual augmentation
approach recently used in the context of short-horizon predictability testing by Demetrescu and
Rodrigues (2020) to improve efficiency. Our proposed tests have a number of advantages for
practical use. First, they are simple to compute making them more appealing for empirical
work than, in particular, the Bonferroni-based methods developed in, among others, Valkanov
(2003) and Hjalmarsson (2011), which require the computation of confidence intervals for the
autoregressive parameter characterising the predictor. Second, unlike some of the available
tests, they allow the practitioner to remain ambivalent as to whether the predictor is strongly
or weakly persistent. Third, the tests are valid under considerably weaker assumptions on
the innovations than extant long-horizon predictability tests. In particular, we allow for quite
general forms of conditional and unconditional heteroskedasticity in the innovations, neither of
which are tied to a parametric model. Fourth, our proposed tests can be easily implemented
as either one or two-sided hypotheses tests, unlike the Bonferroni-based methods which require
the computation of different confidence intervals for the autoregressive parameter depending
on whether left or right tailed tests are to be conducted (see Hjalmarsson, 2011). Finally our
approach is straightforwardly generalisable to a multi-predictor context. Monte Carlo analysis
suggests that our preferred test displays improved finite properties compared to the leading tests
available in the literature. We also report an empirical application of the methods we develop to
investigate the potential predictive power of real exchange rates for predicting nominal exchange

rates and inflation.
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1 Introduction

Since the seminal work of Fama and French (1988) and Campbell and Shiller (1988) (see Fama
and French, 2018, for an overview) there has been substantial interest in testing for long-horizon
predictability, most notably in stock returns, exchange rates and the term structure of interest
rates; see, inter alia, Campbell and Shiller (1987), Campbell and Shiller (1988), Fama (1998);
Campbell and Cochrane (1999); Campbell and Viceira (1999); Menzly et al. (2004); Mishkin (1990);
Boudoukh and Matthew (1993) and Chang et al. (2018). Boudoukh et al. (2008) argue that although
predictability might be relatively weak for a short-horizon it has the potential to be much stronger
for a long-horizon due to the persistence of the predictors typically used, such as dividend yields
and dividend price ratios, among others.

Empirical evidence on the short- or long-horizon predictability of returns largely derives from
inference obtained from predictive regressions and, as such, the size and power properties of tests
from these regressions are of fundamental importance. Many early studies are based on the assump-
tion that the predictor is weakly persistent and are therefore based on the use of standard OLS ¢ and
F-type regression statistics, constructed using either Newey-West or Hodrick type standard errors
(see, for example, Weigand and Irons, 2007). However, data analysis presented in, among others,
Campbell and Yogo (2006a) and Welch and Goyal (2008) suggests that many of the variables used
in predictive regressions are strongly persistent with autoregressive roots close to unity, and that
a large negative correlation often exists between the series we are attempting to forecast (e.g. re-
turns) and the predictor’s innovations, such that the predictive regressor is endogenous. In such
cases these methods, developed for use with weakly persistent regressors, are theoretically invalid
and this can lead to sizable finite sample bias in the estimates of the coefficients from the predictive
regression (Stambaugh, 1986 and Mankiw and Shapiro, 1986) and, correspondingly, to significant
over-rejections of the null hypothesis of no predictability (both in short- and long-horizon con-
texts), thereby significantly increasing the likelihood that any finding of long-horizon predictability
is spurious; see, inter alia, Valkanov (2003), Cochrane (2011), and Phillips (2015)).

As a result, more recently a number of procedures for testing for short- and long-horizon pre-
dictability have been developed in the literature which are designed to be robust as to whether
the predictors are weakly or strongly persistent; see, in particular, Gonzalo and Pitarakis (2012),
Phillips and Lee (2013), Phillips (2014), Elliott et al. (2015), Lee (2016), Kostakis et al. (2015),
Breitung and Demetrescu (2015), Demetrescu et al. (2020), Demetrescu and Hillmann (2020) and
Demetrescu and Rodrigues (2020). Many of these procedures are based on the extended instrumen-
tal variable estimation [IVX] method of Phillips and Magdalinos (2009) which has gained widespread
popularity in this literature and which will form the basis of the tests which we propose in this pa-
per. The IVX approach consists of filtering putative predictors such that, where these are strongly
(weakly) persistent, the filtered series are approximately mildly integrated (weakly dependent) vari-
ables. These filtered variables are then used to instrument the predictor in the predictive regression
of interest. As a result of the reduced persistence of the instrument when compared to the original
variable when the latter is strongly persistent, the resulting predictability test will follow a standard

limit distribution (e.g. Gaussian or chi-squared) irrespective of whether the predictors are strongly

!The standard errors proposed by Hodrick (1992), which exploit the moving-average structure of the temporally
aggregated error term under the null hypothesis of no predictability, perform slightly better than Newey-West standard
errors in finite samples (see Ang and Bekaert, 2007) but are, nonetheless, still invalid under endogeneity and strong
persistence.



or weakly persistent.

An additional complication, relative to the case of short-horizon predictability testing, arises
when looking to develop tests for long-horizon predictability. Specifically, serial correlation is in-
duced into the error term in the long-horizon predictive regression, arising from the temporal aggre-
gation of the dependent variable (which therefore contains overlapping observations). To address
this issue, Valkanov (2003) and Hjalmarsson (2011) propose using the conventional OLS ¢-statistic
but scaled by a constant to reflect the inflation of the standard errors as the prediction horizon
increases. The methods developed in Valkanov (2003) and Hjalmarsson (2011) are, however, some-
what restrictive in practice as they are based on the assumption that the predictor is strongly
persistent. Tests for multiple-horizon predictability designed to be asymptotically valid regardless
of whether the predictors are strongly or weakly persistent and for handling the issues arising from
temporal aggregation are also considered by Phillips and Lee (2013) who develop tests from a re-
versed predictive regression framework, estimated by IVX. Their approach consists of switching
from a predictive regression from the h-period returns on a predetermined variable to a predictive
regression of single period returns on the same predetermined variable aggregated over h-periods.
Xu (2020) proposes an alternative approach, which allows the predictors to be either weakly or
strongly persistent, and builds on an implied estimator obtained from the short-horizon predictive
regression model. The implied estimator concept dates back to Campbell and Shiller (1988) and
Hodrick (1992), and was used by Cochrane (2008) and Lettau and Van Nieuwerburgh (2008). Xu
(2020) derives the asymptotic distribution of the implied test statistic and proposes the use of a
Bonferroni-type approach along the lines of Phillips (2014) as well as a wild bootstrap approach
to compute the necessary critical values. The resulting test aims to control for size under various
degrees of persistence.

In this paper we add to the corpus of available tests for long-horizon predictability in the
literature. The tests we will develop are designed to be valid under weaker conditions than the
leading long horizon predictability tests in the literature, all of which either assume the strength of
the persistence of the predictor is known (some assume it is weakly persistent, some that it is strongly
persistent) and/or assume that the innovations are conditionally homoskedastic. In particular, our
proposed tests can be validly implemented without knowledge of whether the predictors are weakly
or strongly persistent, and have pivotal limiting null distributions under quite general patterns
of unconditional time heteroskedasticity in the innovations, allowing for time-varying innovation
variances but also the possibility of time-varying correlations between the innovations, and very
general forms of conditional heteroskedasticity. Moreover, the practitioner is not required to assume
a parametric model for either the conditional or unconditional time-variation in the innovations.
Unlike Bonferroni-based tests, our tests can be easily implemented to test either one or two-sided
hypotheses and can be straightforwardly generalised to allow for multiple predictors. In a detailed
Monte Carlo experiment we also compare the finite size and power properties of our proposed
tests with the best-performing robust long-horizon predictability tests in the literature, namely the
implied test of Xu (2020), the Bonferroni-based approach of Hjalmarsson (2011), and the reversed
regression-based test of Phillips and Lee (2013). These results suggest that our proposed tests
overall display superior finite sample properties to the extant tests.

The tests we propose are developed within a transformed regression framework which explicitly

accounts for the serial correlation induced by temporal aggregation in the error in the original



long-horizon regression. We estimate the parameters of the transformed regression using the ITVX
approach of Kostakis et al. (2015). The use of IVX estimation has the advantage that it also allows
us to implement a feasible form of residual augmentation which cannot be employed where the
predictive regression is estimated by OLS. This approach, discussed in Demetrescu and Rodrigues
(2020) in the context of the IVX one-step ahead (short-horizon) predictive regression, consists
of augmenting the transformed predictive regression with an additional regressor, constructed as
the residuals obtained from fitting an autoregression to the predictor. Residual augmentation, at
least for the case of a known degree of persistence, can be traced back to at least Phillips (1991),
and augmenting regression models with residuals or nonlinear functions thereof is known to be an
effective way of increasing efficiency; see, for example, Im and Schmidt (2008). In the context of
the short-horizon predictive regression, Demetrescu and Rodrigues (2020) show that this approach
is particularly effective for strongly persistent predictors. We will demonstrate that the estimation
effect from fitting this autoregression to the predictor is asymptotically negligible in the set-up we
consider and leads to more efficient estimation of the transformed predictive regression model on
which our long-horizon tests are based. In particular, akin to Amihud and Hurvich (2004), this form
of residual augmentation eliminates endogeneity in the limit, such that the bias of the IVX slope
coefficient estimator is reduced compared to the corresponding IVX estimation from the transformed
regression without this additional regressor.”

The remainder of the paper is organised as follows. Section 2 introduces the long-horizon
predictive regression testing framework and outlines the assumptions on the model under which
we work. In Section 3 we briefly review the leading tests in the literature: namely, Bonferroni-
based approaches to testing for long-horizon predictability, focussing on the tests of Hjalmarsson
(2011), the reversed regression based approach of Phillips and Lee (2013), and the implied testing
approach of Xu (2020). In section 4 we detail our proposed transformed regression based tests
for long-horizon predictability testing, and here we also discuss their large sample properties. For
expositional purposes, the material in sections 2-4 assumes the case of a single predictor. The case
of multiple predictors is discussed in section 5. Section 6 analyses the finite sample properties of the
procedures in an in depth Monte Carlo study. In section 7 we report an empirical application of the
methods developed in the paper to exchange rate predictability. Section 8 concludes. An on-line
supplementary appendix collects all technical proofs of the results stated in the paper together with

some additional supporting Monte Carlo results and technical derivations.

2 The Long-horizon Predictive Regression Framework

2.1 The Model and Assumptions

The long-horizon predictability testing framework in general has, as its backbone, the recursive

system typically encountered in the short-run (one period) predictive regression context; that is,

Yt+1 = Oé]_+,8113t+ﬂt+1, t= 1)"')T_17 (21)
Tip1 = fo+ &, and &1 = p&r + vepa, (2.2)

2This bias reduction improves the MSE of the forecasts generated using the fitted residual augmented long-horizon
regression; see the evidence provided by Demetrescu and Rodrigues (2020) for the one-step ahead case.



where y;41 is, for example, a continuously compounded excess return of an asset or the variation of
a nominal exchange rate from t to t + 1 and x4 is some (putative) predictor variable. The errors
uy are assumed to form a martingale difference [MD] sequence; precise details will be given below.
In our main exposition and technical analysis we will follow the bulk of this literature and focus
attention on the case of a single predictor; that is, where z; in (2.1) is a scalar variable. Extensions
to the case where the predictive regression contains multiple predictors will be discussed in section
5.

Our interest in this paper centres on testing the null hypothesis, Hy, that (y41 — aq) is a
MD sequence and, hence, that y;.1 is not predictable by z; which entails that 8y = 0 in (2.1).°
The alternative hypothesis is that ;11 is predictable by z;, in which case f; # 0. As discussed
in the Introduction it is important for practical purposes to allow for the possibility of strong
persistence in the predictor variable x; and to allow the shocks driving the predictor, vy in (2.2),
to be contemporaneously correlated with the unpredictable component of y;; that is, u; in (2.1).
We will allow for both of these through Assumptions 1—4 which follow. First, with respect to the
degree of persistence in z;, this is controlled via the parameter p. We allow x; to be either weakly

or strongly persistent through the following assumption.

Assumption 1 The data are generated according to (2.1) and (2.2) with initial condition & which

s bounded in probability.

Assumption 2 FEzactly one of the two following conditions holds true:

i) Strongly persistent predictors: The autoregressive parameter p in (2.2) is local-to-unity

with p:=1—¢/T where ¢ is a fized constant.

i1) Weakly persistent predictors: The autoregressive parameter p in (2.2) is fized and bounded

away from unity, |p| < 1.

Remark 1. Many commonly used predictors are strongly persistent, exhibiting sums of sample
autoregressive coefficients which are close to or only slightly smaller than unity. Near-integrated
asymptotics have been found to provide better approximations for the behaviour of test statistics in
such circumstances; see, inter alia, Elliott and Stock (1994). However, not all (putative) predictors
are strongly persistent and a large part of the literature works with models which take z; to be
generated from a stable autoregressive process; see, for example, Amihud and Hurvich (2004). We
therefore allow for either of these possibilities to hold for z;. It is important to stress that the long-
horizon predictability tests developed in Valkanov (2003) and Hjalmarsson (2011) are only valid for

the case where x; is strongly persistent. &

To complete the specification of our predictive regression model, we make the following assump-
tions with regard to the error terms, u; and v, which are designed to allow for empirically relevant

features frequently found in economic and financial time series.

Assumption 3 The errors u; and vy in (2.1) and (2.2), respectively, are characterized as

ur = YU+ e, teZ (2.3)

3All of the tests we discuss in this paper could equally well be used to test the null hypothesis Ho : 81 = Bo, but
as the focus in equity forecasting is on testing the null hypothesis of a zero coefficient on the predictor we will restrict
our discussion to By = 0.



v = 01+ ...+ Qp1V—pi1 + U, (2.4)

" is serially uncorrelated, satisfying the conditions of Assumption J below, and the

where (¢, 1)

lag polynomial A(L) == 1 —ayL — ... — ap,le_l 1s tnwvertible. For further reference we define
-1

w = (1 - z;i ak) and we denote by ¢y the coefficients of the lag polynomial (1 — pL)A(L); in

case of weak persistence, let by, denote the coefficients of the (infinite-order) MA representation of

the process &, D 1> biL* = (1 — pL) A(L)) .

€t ‘: Ot Cet
147 . TutCut

where ¢ == ((et, Cut)' s a uniformly Ly-bounded stationary and ergodic martingale difference [MD]
2
sequence satisfying E (thg) =1, and E <HE0 (ZtTZI(CtC; — Ig)) H ) = O(T?) for some ¢ < %, with

Eo(-) denoting expectation conditional on {_;}5°, and I the k x k identity matriz. Furthermore,

Assumption 4 Let

let oz := 0, (%) and oy 1= oy, (%), where o. () are piecewise Lipschitz-continuous bounded, non-

stochastic functions on (—o0, 1], which are bounded away from zero.

Remark 2. Assumption 3 imposes, through (2.4), the condition that the errors v; driving & in
(2.2) follow a finite-order autoregression (AR) such that the predictor z; is an AR(p) process with
p > 1; Valkanov (2003) makes the same assumption. The finite-order AR assumption is required
for the tests developed in section 4.2 which make use of the residual augmented regression approach
of Demetrescu and Rodrigues (2020). Here the transformed long-horizon predictive regression is
augmented by the residuals from fitting an AR(p) model to the predictor x;. We conjecture that
these tests would also be asymptotically valid under a linear process type assumption on v;, provided
the truncation lag for the fitted autoregression is allowed to increase at a suitable rate with the
sample size, T'. It is, however, important to note that the long-horizon predictability tests developed
in both Hjalmarsson (2011) and Xu (2020) are based on the considerably more restrictive assumption
that A(L) = 1, such that v; is serially uncorrelated and, hence, that x; follows an AR(1). &

Remark 3. Assumption 4 is similar to Assumption 3 of Demetrescu et al. (2020) and we refer the
reader to Demetrescu et al. (2020) for a detailed discussion of these conditions. Briefly, it allows for
unconditional time heteroskedasticity of quite general form in the innovations (e¢, ;)" through the
functions o.(-) and o, (-) which allow both ¢; and 14 to display time-varying unconditional variances
and for both contemporaneous and time-varying (unconditional) correlation between &; and v;. Em-
pirically plausible models of single or multiple (co-) variance shifts, (co-)variances which follow a
broken trend, and smooth transition (co-)variance shifts are all permitted under this assumption.
The MD structure placed on ¢ allows for conditional heteroskedasticity of a general form obviating

the need to choose a specific parametric model by instead adopting an explicit assumption of mar-

2
Eo (Zthl(CtC; - I2)> H ) = O(T%) for some € < %, where €

controls the degree of persistence permitted in the conditional variances. Stationary vector GARCH

tingale approximability whereby E (‘

processes with finite fourth-order moments satisfy these condition with € = 0, although Assumption
4 is considerably more general as it also allows for asymmetric effects in the conditional variance.
Stationary autoregressive stochastic volatility processes as, for example, are assumed in Johannes
et al. (2014) are also permitted. &



Remark 4. Assumption 4 is considerably weaker than the corresponding conditions imposed by
the leading tests for long-horizon predictability in the literature. Valkanov (2003), Phillips and Lee
(2013) and Xu (2020) all impose conditional (and, hence, unconditional) homoskedasticity on the
innovations. In Remark 12, page 4414, Xu (2020) suggests the possibility that his approach could
be modified (but does not actually develop such a modification) to allow for the case where the
innovations can be conditionally heteroskedastic satisfying essentially the same conditions as are
imposed in Assumption INNOV of Kostakis et al. (2015, p. 1512) for their short-horizon predictabil-
ity tests. These conditions are, however, still considerably more restrictive than Assumption 4 as,
in additional to imposing unconditional homoskedasticity, they also impose the condition that the
error term in (2.1) is generated according to a stationary finite-order GARCH(p, ¢) model with finite
fourth moments. Hjalmarsson (2011) allows for conditional heteroskedasticity but again assumes
unconditional homoskedasticity; notice, however, that Hjalmarsson (2011) does not allow for the
case where x; is weakly persistent, which as discussed in Remark 12 of Xu (2020), is the case where

allowing for conditional heteroskedasticity is most problematic. &

Remark 5. The error term u; from (2.1) is formulated as a linear combination of the uncorrelated
innovations ; and ;. It is then seen that the degree of endogeneity present is controlled through
the parameter v. Where v = 0, u; = &; and, hence, the error term in (2.1) is uncorrelated with the
innovation driving the predictor. The degree of endogeneity present is measured by the correlation
between u; and v;. This is given by ¢; := ~vo,/0w which can therefore be either constant or
time-varying under Assumption 4. It is worth stressing that Assumption 3 restricts v in (2.3) to
be time-invariant. We need to make this assumption to establish the large sample validity of the
residual augmentation method we make use of in section 4.2. It might be possible to relax this
assumption by using local (nonparametric) estimation of «y, but we leave such developments for
further research. The restriction that v is constant is common to all of the existing long-horizon

predictability tests discussed above. &

2.2 The Long-Horizon Predictive Regression Specification

The most common long-horizon predictive regression specification used in empirical analysis results

from the h-period, h > 1, temporal aggregation of (2.1) and is given by

yg_}:_)h =ap + Brxe +erroryip, t=1,....,T —h (2.5)

t(_}f_)h = 2?21 Yi+j is the h-period cumulative variable to be predicted. Notice that for h =1,

(2.5) is simply the short-horizon predictive regression in (2.1). To gain further insight into the
(h)

where y

specific features of (2.5), let us examine the h-horizon cumulated dependent variable y, " closer.
From (2.1), this can be written as,
h—1
h h
yt(+)h = hoy + Z Tyj + “§+)h7 (2.6)
j=0

where, based on (2.3), uii)h = 2?21 Upyj = ’yvﬁ)h + 6§Th with vglr)h and 6§Th defined implicitly.

Notice, moreover, that as the autoregressive representation of the predictor in (2.2) is given as



Zi41 = px(l — p) + prt + vig1, then by recursive substitution we have that,

h—1 j h—1h—j
Zﬂftﬂ —Ih>QZZPZ Ya(1—p +ijxt+1h>222p Ut (2.7)
Jj=11i=1 j=1i=1

where Ij,> is an indicator variable which takes the value 1 when h > 2 and 0 otherwise.
Consequently, replacing Z?;ol T4 in (2.6) by the expression on the right-hand side of (2.7), the
general representation of the long-horizon predictive regression model specification is obtained,
h h
Yith = o+ By + wfy, (2.8)
h— j i— h
where aj, = hai + Bilp>g SIS P e (L = p), By = By and wi = ul, +
B1ln>2 Z?;ll Z?;f pi vy ;. Equation (2.8) gives a concrete formulation to (2.5) and corresponds
to the long-horizon framework that will be considered for analysis throughout this paper.
As will subsequently become clear, this representation is particularly convenient for the case
where x; is strongly persistent. We note, however, that any serial correlation in v; induces regressor
endogeneity which, under weak persistence, leads to inconsistent estimation. In such cases is more

suitable to write
h—1
zxtﬂ — I z (1 - ) e z St iz Y vl
Jj=1

where vy = €y — g6, o8 Tj = 1o (1 §2) + g+ v with 0 := Y00 bebrag, j = 0,...,h—1,
where by, are the coefficients of the (infinite-order) MA representation of the process ;. Under uncon-
ditional homoskedasticity, the quantities U#:',—j are projection errors from an orthogonal projection
of &+; on &, while, under time-varying volatility, they can be interpreted as local counterparts
thereof. Importantly, they are uncorrelated in the limit with the predictor z; and can thus be seen
as components of the h-step ahead forecast error. For weak persistence, this implies the long-horizon
coefficient Bh Will differ from [ Z}.‘_l o) if v; exhibits serial correlation; we may therefore switch to
By = 1 Z = 0 9 ~ whenever appropriate.

Equation (2.8) shows that g, # (1 for h > 1 when 1 # 0. The coefficient 3, in (2.8) is
therefore empirically useful, as a finding of statistical significance from an estimate of 5, can still be
interpreted as evidence of long-horizon predictability, given that if there is no short-run predictability
(81 = 0) then there is also no predictability at other horizons (h > 1). Consequently, under suitable
assumptions, the null hypothesis of no-predictability, Hp, can be tested using statistics computed
from (2.5). Under the assumption that x; is weakly persistent tests can be based on conventional

regression t-statistics, provided h is fixed. However, care is needed because the dynamics of the

(h)
t+h

B1 = 0 (and, hence, fj, = 0), then this error term is an M A(h— 1) process. Where 1 # 0, any serial

(h) .
t+h’

wgi)h will follow an M A(h) process. To account for these dynamics the ¢-statistic needs to be based

on either HAC (Newey and West, 1987) or Hodrick (1992) standard errors. Although these are

asymptotically equivalent, simulation evidence presented in Ang and Bekaert (2007) suggests the

error term w, ., in (2.8) differ according to whether there is predictability or not. In particular, if

for example, if v; is an M A(1) process, then

correlation in vy will change the dynamics of w

latter deliver tests with better finite sample behaviour. Moreover, Nelson and Kim (1993) show that

finite sample biases present in the OLS estimate, BIOLS say, of 51 from the short-horizon predictive



regression in (2.1) (which are larger, other things equal, the greater the persistence of the predictor
and the higher the endogeneity correlation between the innovations) are exacerbated by the long-
horizon aggregation. Consequently, several bias correction approaches have been suggested for the
case where x; is weakly persistent; see for instance, Stambaugh (1999), Lewellen (2004), Amihud
and Hurvich (2004), Amihud et al. (2009, 2010) and Kim (2014).

The standard t-tests and bias-correction methods discussed above are, however, not valid when
x¢ is strongly persistent. In particular, the limiting null distribution of the t-statistic is not pivotal
because the endogeneity present in the model is not accounted for. In the next section we will
briefly review tests which have been developed in the literature to allow for strong persistence in

Tt.

3 Extant Tests for Long-Horizon Predictability allowing for Strongly

Persistent Predictors

In this section we present a brief overview of test procedures for long-horizon predictability which
allow for strongly persistent predictors. Specifically, we will outline the Bonferroni-based approach
of Hjalmarsson (2011), the implied test of Xu (2020), and the reversed regression-based test of
Phillips and Lee (2013). A Monte Carlo study comparing the finite sample performance of these

tests with the tests proposed in this paper will be provided in section 6.

3.1 Bonferroni-based Tests

Assuming z; is a strongly persistent (near-integrated) predictor, Hjalmarsson (2011) builds on the
approach of Amihud and Hurvich (2004) to compute a second-order bias corrected estimate of fy,
in order to develop a feasible long-horizon predictability test. In the context of (2.8), this is based
on the infeasible augmented regression,

h h h
y§+)h =ap, + Brrs + ”yut(+)}L + 5§+)h +rien, t=1,...,T — h, (3.1)

where ry,p, == wt@h — ugﬁ)h = Bilp>2 Z;:ll Z?:_f p" vy, and, from Assumption 3 and (2.2),

h

h p—1
h
Vt(+)h = E :Vt+j = E (Tt4j — pa) — E (Tt j—k — Ma) |-
Jj=1 k=1

j=1 =

(h)

The inclusion of Vt_]f_ , in (3.1) serves to remove the endogeneity bias present in standard OLS estima-
tion of (2.8) . Assuming (us41,v441)  is an unconditionally homoskedastic MD process, Hjalmarsson
(2011) shows that, for fixed h, the infeasible scaled OLS estimator from (3.1), BAé say, when divided
by h has a mixed normal null limiting distribution whose variance does not depend on h.

In order to obtain a feasible version of (3.1), Hjalmarsson (2011) adopts an approach based on
Bonferroni-bounds. This involves computing a first-stage confidence interval for the local to unity
parameter ¢ which is then used to develop a test for long-horizon predictability based on a bias
reduced estimate of (3, (see also Campbell and Yogo, 2006a). Denoting this confidence interval,
with confidence level 100(1 — A1)%, by [cy,,¢Cx,], feasible, yet conservative, versions of tests for

Hy : By, = 0 against Hy : B, > 0 and Hy : B, = 0 against H4 : B < 0, which we will generically



define as tfonf , are, respectively,

V2 omin BT Y20LY S 4, (3.2)
’ Z€lcn, 8] ’
and
h_1/2t2?§f = max h_I/Qt,?és < Zxgs (3.3)
ce[gxl,ckl]

with tgés being the OLS t-ratio for 85, = 0 computed from a feasible version of (3.1) where ﬁt(jf)h
is obtained based on p := 1 — ¢/T with ¢ € [cy,,C),], and z), is the standard normal critical value
associated with the significance level A9 of the test, such that Ay + Ao = A, where X is the desired
significance level of the test. In other words, a rejection occurs for the Bonferroni bounds test only
if it occurs for every possible value of ¢ in the first stage confidence interval. The requirement that
A1 + A2 = A can lead to overly conservative tests and, in practice, adjustments to A1, to shrink
the coverage rates of the confidence intervals for ¢ are typically recommended; see Cavanagh et al.
(1995) and Campbell and Yogo (2006b). In the linear predictive regression context, Hjalmarsson
(2012) finds that his test has better power properties than the earlier test of Valkanov (2003). It is
important to stress that these Bonferroni-based tests are developed under the assumption that z;
is strongly persistent and are not valid if ; is weakly persistent. As we will see from the simulation
results in section 6, these tests do indeed not perform well when z; is weakly persistent. Moreover, it
is important to note that Hjalmarsson (2011)’s approach is based on the assumption that A(L) =1

in Assumption 3, such that x; follows an AR(1).

3.2 Xu (2020)’s Implied Test

Xu (2020) develops an alternative approach to testing for long-horizon predictability which allows
for the case where the predictor, x¢, is either strongly or weakly persistent based on the compu-
tation of the implied long-horizon coefficients from short-horizon regression estimates; see, among
others, Campbell and Shiller (1987), Kandel and Stambaugh (1996), Hodrick (1992) and Bekaert
and Hodrick (1992). This choice of estimator is motivated by the observation that short-horizon
estimation is often more efficient than long-horizon estimation; see, for example, Boudouk and
Richardson (1994). Xu (2020) bases his test on the implied estimator of Sy, By = B?LS Z?;é il
where SLS and p are the OLS estimates obtained from (2.1) and (2.2), respectively.

The implied long-horizon predictability test of Xu (2020), for the null hypothesis Hy : 5, = 0,

is based on the statistic

X = vl B (3.4)

where v?,, 1= (}Q(ZZ;I 7)q with q := (¢1, G2), where G := Z;";Ol P and gy = B?LS E;-L;é G,
and where the vector of OLS residuals, &1 := (l¢+1, 0¢41)’, computed from (2.1) and (2.2), is used
to estimate the covariance matrix of e;y1, Q= 2?1_11 ét+1é£+1~

Under the assumption of conditionally homoskedastic MD innovations, Xu (2020) shows that
under Ho: (i) if @ is strongly persistent, ;X" 4 o {(fol J2(s))71/2 fol jc(s)dW(s)} + (1 — ¢?)22,
where ¢ denotes the (time-invariant) correlation between the innovations w1 and v441 in (2.1) and
(2.2) (see Assumption 3), J. an OU process driven by the standard Wiener process W and Z is
a standard normal variate independent of W; and (ii) if z; is weakly persistent, ;X" 4N (0,1).

These results show that the limiting null distribution of the test statistic changes depending on the



persistence of the predictor and the magnitude of ¢. To account for this, Xu (2020) proposes two
alternative ways to compute the necessary critical values. One is based on a Bonferroni procedure
and the other uses a bias-corrected wild bootstrap approach (residual-based with recursive design),
although Xu (2020) does not formally establish the asymptotic validity of the latter. Out of the
two approaches Xu (2020) recommends the latter, which is the one we will consider in our Monte
Carlo analysis. It is important to note that the asymptotic validity of Xu (2020)’s test, like that
of Hjalmarsson (2011), relies on the assumption that z; is an AR(1) process, so that A(L) =1 in
Assumption 3. The assumption of no serial correlation in v; is essential for Xu (2020)’s approach
under weak persistence, as in this case we have that g, = 5 Z?;é (% (see section 2.2), implying

that 51 Z?;é p’ is not the correct quantity to base a test on.

3.3 Reversed Regression-based Tests

An alternative to the use of HAC or Hodrick (1992) standard errors to account for the serial
correlation in the error term in the long-horizon predictive regression model in (2.8) discussed in
section 2.2 is to use an alternative regression specification that is designed to explicitly account
for the overlapping data issue. Omne such approach is to use so-called reverse regressions; see,
among others, Jegadeesh (1991) and Cochrane (1991). This approach, instead of being based on
the regression from the h-period returns on a predetermined variable, as in (2.5), is based on
a regression of single period returns on the same predetermined variable but aggregated over h-

periods. Specifically, this reverse regression formulation is given by,
h
Yt+h = Oé;;ev—{—ﬁrev §+)h 1+Ut+h, t= 1,,T—h (35)

where ZL‘Ei)h_l = Z? éxtﬂ See also Hodrick (1992), Maynard and Ren (2014), Ang and Bekaert
(2007), and Wei and Wright (2013), inter alia. It is seen from (3.5) that the error term is w;p
which is serially uncorrelated. An implication of this is that the IVX estimation and hypothesis
testing methods developed in Kostakis et al. (2015) can be directly applied to (3.5), which is not
the case for (2.8) because of the induced serial correlation in wi_}f_)h

The OLS estimate of 57" from (3.5) is given by ﬁm’ = (Et 1 :L'Hh 1Ji+h)/( tT:_lh(:Eii)hil)Q),
where for a generic sequence {w; }o_,, @y := wy—(b—a+1)"1 $° e—q Ws- It is not hard to establish that,
regardless of whether x; is weakly or strongly persistent, Bm’ = ( tT:_lh z2)/( tT:_lh(a_cgi)hil)Q) AFCL)LS
+0,(1), where ﬁhOLS is the OLS estimate of /), from (2.5). Motivated by this, Phillips and Lee
(2013) develop a long-horizon predictability test based on applying IVX estimation to the reverse
regression in (3.5). Specifically, they use the IVX instrument z; suggested by Kostakis et al. (2015),

which is constructed from the predictor as,
=(1—-oL)} YAz, = Z o Az ;. (3.6)

The persistence of z; is controlled by setting o := 1 — with 0 < n < 1. If x; is near integrated,

7>
this makes z; approximately mildly integrated (and thus of lower persistence), while if z; is weakly
persistent then one may decompose z; = xy — gz + ¢, where the rest term satisfies 1 — 0 as t — oo
and can be controlled for in the relevant expressions; see e.g. Lemma S.3 in the supplementary

appendix for details. Because the reversed regression in (3.5) features xii)h_l = Z;L 3wt+], the

10



long-horizon IVX approach is based on instrumenting :cg +)h 1 by zfi)h_l : Z;’ éztﬂ

Allowing the forecast horizon, h, to grow at rate TV/2T~" 4+ T"h~1 + h/T — 0, such that it
increases at a slower rate than the sample size T', but faster than the (user-controlled) degree of

mild integration of the instrument, Phillips and Lee (2013)’s long-horizon predictability statistic is

rev,PL —122\—1/2 prev
th Jgvxr (H au) / 5}1,1'1;3: (37)

—1

. T—h ~(h) (h) —lqy
where 37 '—< t 1 Ty h 1% h—1 Zt 1 Zt+h VtensH = | Ham o0 (Hom,m) T H gy |

(h)  ~~T—h/_(h)
Moo =301 ﬂft+h Vishot1s Hamm =01 (Zh 1

that the innovations are conditionally homoskedastic, Phillips and Lee (2013) show that /"Xl has

hivx

a standard normal limiting distribution under Hy. It should be noted that Phillips and Lee (2013)

do not formally allow for the possibility that x; is weakly persistent.

T-1 .
)2 and 62 := 15 >, 47, ;. Assuming

4 Transformed Regression-based Long-Horizon Predictability Tests

In this section we introduce our new approach to long-run predictability testing which builds on the
IVX framework of Kostakis et al. (2015) and the augmented regression approach of Amihud and
Hurvich (2004), Hjalmarsson (2011) and Demetrescu and Rodrigues (2020). In common with the
tests of Xu (2020) the tests we develop are asymptotically valid regardless of whether the predictor,
T, is weakly or strongly persistent, however we do not need to implement either a Bonferroni or wild
bootstrap scheme to run our tests. Moreover, unlike the tests in Xu (2020) we do not need to assume
that z; follows an AR(1) process. We can also allow the innovations (u¢11,v:41)" to display the very

general forms of unconditional and/or conditional heteroskedasticity specified under Assumption 4.

4.1 Transformed Regression IVX based Tests

In a recent paper Britten-Jones et al. (2011) develop a method for conducting inference in linear
regression models with overlapping observations and stationary covariates. Before showing how we
can apply this approach to the specific setting considered in this paper, we first briefly review the
transformed regression approach. To that end, suppose we have a generic linear regression model
Ay = XB4u, where y is the (T'—1)-vector of single period returns, Ay, is the known (T—h)x (T—1)
aggregation matrix with entries a;; = 1 if ¢ < j <74 h —1 and zero otherwise, i = 1, ....,T"— h, such
that Ay is the vector of (overlapping) h-period returns, X the regressor matrix with associated
vector of coefficients, 3 and u is the error vector. Britten-Jones et al. (2011) demonstrate that the
OLS estimate of 3 from this regression, 3 say, is numerically identical to the OLS estimate from the
transformed regression y = X3 + 11, where X := A} X(X'A, A} X) ' X'X. The associated estima-
tion error from the transformed regression can then be written as 8 — 8 = (X'X)~1X’'Ap1, which
is seen to depend on the autocorrelation structure of u, the disturbance term in the transformed
(non-overlapping) regression, rather than on u, the disturbance in the untransformed (overlapping)
regression. The part of the autocorrelation in u induced by the temporal aggregation (through Aj)
is therefore explicitly accounted for and does not need to be estimated from the data when conduct-
ing inference on B3 via the transformed regression. In the context of the DGP in (2.1)—(2.2), a key
implication of this result is that while the IVX approach of Kostakis et al. (2015) cannot be used to

conduct valid inference on f, in (2.8) under Assumption 3, because of the autocorrelation present

11



(h)
t+h

regression analogue of (2.8).

in the error term u induced by temporal aggregation, it can when applied to the transformed

To that end, consider again (2.8). Using the general result above it can be shown® that the
OLS estimator of the slope parameter [, A}?LS = (ZtT 1h Etgjti)h)/(ZtT 1h 7?), can be written

equivalently as

(h) -
atrf . Zt 1 xtrf( Yt+1
By’ (4.1)
Zt 1 xt
where
ST fort=1,...h—1
g = g oS g forh<t<T—h . (4.2)
ZthhthfUz fort=T—-h+1,...,T—1

From (4.1) it can be observed that Bzrf is computed from the original non-overlapping one period
returns. Notice that the transformed estimator in (4.1) can also be obtained from a regression of

f:(h)
T-1 -1 ,T—h
~trf, . ( (trf ) ) (th)_trf().

Yp+1 ON acHh 1, Where
t=1 t=1

Interestingly, it can be shown that the OLS slope estimator from the reverse regression (3.5), A,Tf”

say, and BZTf are linearly related; specifically,

—_h _ k — o\ —
e _ Sit B oy, Xkt (D Ik — (0 30)5k1]
h ™ ~T—h,-(h) h T—h,=(h)
t=1 (xt+h 1) t=1 (xt+h 1)2

which suggests that when h is small the performance of predictability statistics from the reversed
regression and transformed regression should be very similar, but as h increases their performance
will likely differ.

If we knew that the predictor, x;, was weakly persistent then we could base tests on the OLS
estimate from the transformed regression discussed above. However, as with the tests of Phillips and
Lee (2013) from section 3.3, we want to allow for strongly persistent predictors. We will therefore
apply the IVX framework of Kostakis et al. (2015) to the transformed regression. To that end,
recall the IVX instrument z; defined in (3.6). The transformed regression based IVX estimator is

trf,(h)

then obtained by regressing ;41 on z, , where

T—h , =\ trfh)
Strfih) (ZE" aan) ot

4.3
T71< trf,(h)>2 (4.3)
t=1 \ %t
with
Sz fort=1,..,.h—1
Zfrf’(h) = zt(h) = Z?:l Zt_pei for h<t<T—h . (4.4)
S fort=T—h+1,.,T —1.

4Full derivations for the functional forms of the estimators and statistics from the transformed regression given in
this section are provided in the supplementary appendix.
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Hence, we obtain the transformed regression IVX estimator,

h
strf Zt 1 Ztrf( )y 1

o= 4.5
h,ive Zt . 2Tt ( )
It can be shown that
strf tT__ll Zfrf’(h)ﬂtﬂ
Bh JvT = ﬂ + _ZTfh 2y + Op(l) (46)
t=1

and so the IVX estimate provides the basis for inference on ;. In particular, a test for the null
hypothesis, Hy : 8y, = 0, against one or two-sided alternatives, can be obtained using the IVX based
t-ratio from the transformed regression,

Atrf

trf . Phive (4.7)

h,ivx * strf
e (B

In the context of (4.7), in view of Assumption 4 which allows for both conditional and unconditional
heteroskedasticity in the innovations, we implement our IVX-based tests with conventional White

heteroskedasticity-robust standard errors; that is,

T—h 171 T—h _171/2
(62%5) = (Z ZtJ?t) > (zfr , ut+1) <Z ztxt> (4.8)
t=1 t=1 t=1
where g1 = i1 — BZTZJ; . fo ) are the residuals from the IVX estimation of the transformed

regression. When testing for no predictability, one may alternatively compute the residuals under

the null; that is, ity = Y41

4.2 Residual Augmented Tests

Recall the infeasible augmented regression in (3.1). On first sight, one might think it is possible to
implement a feasible version of (3.1) that can be estimated by OLS simply by replacing the regressor
(h)

v,.}, With an estimate of that quantity constructed from the OLS residuals, 7+ say, obtained from

fitting an AR(p) model to x; (see Equation (4.9) below). This Will not however, work. To illustrate

why, consider the feasible estimator Bh = (ZT h ?) Zt —» yt +h$t’ where yg?h = yg:)h 'Ayﬁt(_]i)h

and 4 is a consistent estimator of v e.g. the fitted coefficient of an OLS regression of §; on 4 when
testing the null B, = 0. In the simplest possible case where no short-run dynamics are present in

the predictor process, it then follows that,

5 5 ?1hxt37§h)h 1
B =B+ —n) =y o)
t=1 t

where (! is the infeasible estimate of 8, from (3.1). This shows that the feasible estimate features an

additional term relative to the infeasible estimator, BA{L, which depends on the estimation error associ—
ated with the predictor’s autoregressive parameter, (p—p), weighted by ’y( Z? 1h m?) ZtT 1h ftit Y h 1

This term can be shown to be of the same order of magnitude as Bé (see e.g. Cai and Wang, 2014,

51f not testing the null 8, = 0, 4 may of course be obtained via the OLS regression of @, and i.
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for the short-horizon case) which renders the limiting null distribution of ﬂf non-pivotal. In fact,
if computing the feasible estimator for A = 1 by augmenting the predictive regression with the OLS
residuals 7441, it can be shown that the residuals 7411 are exact orthogonal to the regressor, x;, and
so this version of the feasible estimator will be numerically identical to the standard OLS estimator
in the short-horizon case.

As discussed in the context of short-horizon predictability testing in Demetrescu and Rodrigues
(2020), the problem with implementing a feasible version of (3.1) discussed above does not arise if
we estimate the residual augmented regression by IVX. Following this idea, we can apply residual
augmentation to the transformed IVX estimate discussed in section 4.1 by regressing +1 — YV¢+1,

trf,(h) trf,(h)

rather than 41, on z; , where Z; is as defined in (4.3) and the residuals ;41 are computed

from an estimated autoregressive model of order p for the predictor x;, viz.,

p p
Dyt =T — Y OkTik=vi— Y (cf;k - ¢k) Tk (4.9)

k=1 k=1

fort =p,..., T — 1, where gz@k, k =1,...,p are the OLS autoregressive parameter estimates. The
dependent variable, g;+1 — AP;41, is simply the OLS residual from the regression of g;+1 on Dyy1.
In practice the lag augmentation order, p, in (4.9) can be selected using a standard information

criterion, setting the minimum possible lag length allowed to be one. We denote the resulting

trf,res

residual-augmented transformed regression IVX estimator by Bh A

The suitability of this approach in the IVX framework stems from the fact that the additional
term attributable to the OLS estimation errors in the feasible estimation, discussed above, is asymp-
totically negligible in the IVX context when the predictor is strongly persistent. To see why, consider

the computational form for BZZ{;;‘:S,

Atrfres Z yt—l-l ’Ayﬁt—l-l)

hyjvxe _
Zt:l 2t

which can be written equivalently as

(4.10)

ZT ! trf h)(ﬁll‘tJrUtH A1)

hyiivze _
PO

Using results from the proofs of Theorems 4.1 and 4.3 in the supplementary appendix, it can be
shown that

Bt’/‘f,res _

tr — ~ A
. i 5t1+71/t1—77/t1
’ Zt 1 2tTt

t _ A~ ~
z P &1 = V(B = Bip1) — (5 = 7)Pr1)

- ZT—]‘L 2T + Op(l)
t=1
I fi(h) ~
Z tr )€t+1 P ZT 1 tr Zi i
= Bn+ + Y (Pr — ér) + op(1).
Zt 1 ALt k=1 Zt 1 ZtTt

As will be demonstrated in the formal derivations in the appendix, the usual OLS autoregressive

convergence rates on ¢y, suffice for the estimation effect to be negligible under strong persistence.
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In the short-horizon case, Demetrescu and Rodrigues (2020) show, however, that the variance of
Atrf,res
h,ivx

recommend computing the standard errors corresponding to the weak persistence case, and prove

will be affected by residual augmentation under weak persistence. For this reason they

that the correction term this entails has an asymptotically negligible effect on the standard errors
under strong persistence, such that one may conveniently use the standard errors developed for
weak persistence irrespective of whether the predictor exhibits weak or strong persistence. We will
adopt the same approach in the long-horizon case.

Thus, the relevant test statistic to test the null hypothesis Hy : 5, = 0 is given by,

Atrfires

girfores . Thive (4.11)

hjgve ~
) trf,res
s.e. (@hiw )

where .
- h
(ﬂlirz{;;es) = (M) ™! |:Hz”f ezt e + V2O )}

. — _ t
with H,, = (Z,‘leh ztact); Hztrf,(h)éztrf,(h)e = (Z ( ri )) 5t+1> and

Atrf,(h) . ’
T ( T Torg( h)wH HmmvamHztrf (QOF2

L _ _ / trf —1 trfi(h !
letting &; := (T4, ..., Z4—p41) , we have further H i s,z = (Z xt, s t_p 2 ( )mt p+1> ,
= ZZ:pl &y, and Hzgzy = Z?:;l :thﬁzgﬁfﬂ, with &;41 the residuals from regressing ;41

on 41 and an intercept (i.e. computed under the null hypothesis). When not testing the null
Brn = 0, 41 should be computed as the usual residuals, i.e. including z; as regressor. These
(heteroskedasticity-robust) standard errors are designed to automatically take the estimation vari-
ability of (Z)k into account whenever needed, such that the standard errors are asymptotically correct
without having to specify whether x; is weakly or strongly persistent; cf. Demetrescu and Rodrigues
(2020).

4.3 Asymptotic Theory

In this section we analyse the large sample distributions of the estimators and test statistics proposed
in sections 4.1 and 4.2, when the data generating process is as in (2.1)—(2.2) under Assumptions
1-4. In this setting, it is observed that the partial sums of the innovations v; and ¢; display joint

weak convergence to time-transformed Brownian motions (see Lemma S.1 in the supplementary

|sT|
Jo e (r) AW (r)
wx(0)- (i)

were “=" denotes weak convergence on the space of cadlag real functions on |0, 1]’“ equipped with the

appendix); precisely,

Skorokhod topology, and where W, and W, are independent standard Wiener processes. Moreover,
under near integration (Assumption 2.(i)), it also follows that the stochastic part of the suitably

normalised regressor weakly converges to an Ornstein-Uhlenbeck-type process; that is,

T_1/2§L5TJ = w/ e~ g, dW, (1) =: w4 (s) . (4.12)
0
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In Theorems 4.1 and 4.2 we first establish the limiting distributions of 37" and 3"/ a

h,ivx hyiivze

their associated standard errors in the case where x; is strongly persistent.

Theorem 4.1 Under Assumptions 1, 2.(i), 3 and j with ¢ < min{l —n;n/2} and as h,T — oo
such that h/(min {T37’/2_1/2; T*11) + TV2=1/2 /b — 0 — 0,

Tn/2+1/2 ( .

d
- trf’res—ﬁh)i./\/l./\/’ 0’ afo ) S

e 202 (Jw fo o (8)d e (s ))2

where a and 1 are the tuning parameters for the IVX instrument in (3.6) and MN denotes a
mized normal distribution, with w defined in assumption 3, J.,(s) defined in (4.12) and J.,(s) :=
fo co(s)ds, and

1
Tn/2+1/286 (Btrf,res> _ \/afo o2 (s)o2(s)ds

h hyiivze 202 <JCU fO CU dJca( )) .

Remark 6. The limiting results given in Theorem 4.1 are similar to those given in Theorem
3.2 of Demetrescu and Rodrigues (2020) for the short-horizon h = 1 case, but hold under consid-
erably weaker assumptions on the innovations than are allowed for in Demetrescu and Rodrigues
(2020); here, we allow for conditional heteroskedasticity while Demetrescu and Rodrigues (2020)
only consider heterogeneous independent error sequences. Compared to the short-horizon case, the
results in Theorem 4.1 need to take account of the implied aggregation of various quantities which,
although individually asymptotically negligible quantities, arise over h periods. Given that we allow
for h — oo, this entails the need to place additional conditions on the persistence allowed for in the
IVX instrument, as controlled by 7. In particular, Theorem 4.1 requires that n > 1/3, in addition
to conditions relating the persistence of z; to the strength of the GARCH effects present in the
data generating process, as controlled by e. The choice of n = 0.95 for the IVX tuning parameter
recommended by Kostakis et al. (2015) is permitted under our rate restrictions, as long as the serial
dependence in the conditional variances is not too high. We note that the results only require that

h — oo at a minimal rate, which is quite mild when 7 is close to unity. &

Theorem 4.2 Under the conditions of Theorem 4.1, we have that

T"/:l/Q(A )= o afyor (:9 (02 (s )Jlr'wf > (s)) ds
2w Jca(l)Jc,U(l) _f() J, ( )dJcJ( ))
and
T I Vafi 02 (5) (02 () +~202 (s)) ds
Ts'e ( h,ivz)

Va2 (Jeg (1)) fo o (8)4Te(s))

Remark 7. A comparison of the results in Theorems 4.1 and 4.2 highlights the (asymptotic) effi-

ciency gains which arise from residual augmentation. This can be seen by noting that the asymptotic
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variance (conditional on J. ) of BZTZ];:C is strictly larger than that of the residual augmented estima-
Atrf,res ’
/ whenever v # 0. %

tOI‘, hyjvx

In Theorems 4.3 and 4.4 we next establish the limiting distributions of 374" and A/ and

hivze h,ive

their associated standard errors in the case where x; is weakly persistent.

Theorem 4.3 Under Assumptions 1, 2.(ii) 3 and 4, we have as h,T — oo such that h3/T +

TY2=1/2 |h — 0,
2
T /4 rf,res fO UE S) ds
JE (e - 3) S [0, 02 2
(90 fo o (s) ds)

where 0y := ) ;< b% is as defined in Assumption 3, and

fres Jo o3 (s) 02 (s) ds
\/f () - :J\/anofozzds'

I/

Theorem 4.4 Under the conditions of Theorem 4.3, we have that

JE (Bt - ) S v [ 0. T2

e “ [y 02 (s) (02 (s) + 1202 (5)) ds
(90f0 o2 (s ds)

and

h,wz ( 90 fo 0_2 dS

Remark 8. An interesting implication of the results in Theorems 4.1 — 4.4 is that the convergence
rates of both Btrzf "¢ and BZZ’;CE decrease with the forecast horizon. In the strongly persistent case,
however, (3, increases (approximately) linearly in h which offsets the decreased convergence rate of
the estimators. In contrast, in the weakly persistent case, 85, can be seen to remain bounded leading
to power losses as the horizon h increases. We will also see this difference in a comparison of the
asymptotic lower power functions of the tests given in Theorems 4.5 (strongly persistent predictor)
and 4.6 (weakly persistent predictor) which follow next. The Monte Carlo experiments reported in

section also clearly bear out this asymptotic prediction. &

Theorem 4.5 Under the conditions of Theorem 4.1 and local alternatives of the form B = bT—1/271/2,

we have that

ttrf,res d, MN bw\/g( C" CU fo CU dJca( )) ]
o ¢MM@M ’

and

g%ﬂwfﬂw Jeol LMMMM
\/f002 s) +~202(s))ds
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Theorem 4.6 Under the conditions of Theorem /.3 and local alternatives of the form By = bh'/2T—1/2,

we have that
s)ds
1

7

trfres d ( 60]
th,{vx N b 0’
w fo o2ds
and

ttrf d eof()
hwcc
wwo o3 (s )+7 o2< ))ds

Using the results given above in Theorems 4.5-4.6 we are now in a position to establish the

i1

limiting null distributions of our proposed transformed regression long-horizon predictability test

t'rf,

statistics, th "/ from section 4.1 and ty 7 from section 4.2.

Corollary 1 Under the null hypothesis of no predictability Hy : Br, = 0, we have that under Assump-
tions 1-4 with e < min{1l —n;n/2} and as h,T — oo such that h/min {T3”/2*1/2;T277*1;T’7/3} +
T2 s 0,

girtres 4oar0,1)  and 7 % A(0,1).

h,ivx h,ivx

The result in Corollary 1 demonstrates the key result for practical implementation of our pro-
trf,res

posed long-horizon predictability tests, that both ttrf and t, 7’ ~ admit standard normal limiting
null distributions regardless of whether the predlctor is weakly or strongly persistent. These results
hold under the very general forms of conditional and/or unconditional heteroskedasticity permitted

under Assumption 4.

5 Multiple Predictors

In empirical work one might wish to consider predictive regression models with several possible
predictors. This can help avoid the problem of spurious predictive regression effects in the case
where relevant strongly persistent predictors are omitted from the estimated predictive regression;
cf. Georgiev et al. (2018). In this section we briefly detail how the long-horizon predictability tests
developed in section 4 can be implemented with multiple predictors.

To that end consider replacing (2.8) by its multivariate counterpart

h h
yt(+)h =y + ,Bﬁlwt + wt( ) (5.1)
where a:I := (241, ..., 2x) follows a K-dimensional vector autoregressive data generating process
of order p, VAR(p); that is,
=, + R“’Ll + vy, and vy = Z Ljvi_j+vy (5.2)

which is either stable or (near) integrated as before depending on the properties of the (diagonal)
autoregressive coefficient matrix R. The process vy is assumed to follow a stable VAR(p—1) process.

As with (2.8), the regression coefficients and error term in (5.1) can be related back to those in the
corresponding short-horizon regression, ys4+1 = a1 + ,C‘}'lwt + Upy1, Via the relationships, ayp, := hay +
Bilnz2 Il L R, (I-R), B, = B LI RY and wily), o= uy) +81 Inzo 3070 S Ri- Loy
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Again we allow for the possibility of endogeneity in all regressors through the non-zero coefficient
vector v in the decomposition

U1 =Y Vi1 + ey, (5.3)

where the innovations vy and ;1 are heterogeneous MDs, obeying a multivariate version of
Assumption 4.
To implement the transformed bias reduced IVX approach introduced in this paper in the multi-

ple predictive regression case, we first compute the vector of residuals ©; from a vector autoregression

model of order p of the demeaned predictors; that is, with :17:12r = (Zy1,. .. ,jtK)/,
p A
D=2, — Y ®F,, i, t=p,... T—1, (5.4)
j=1
with <i>j, j=1,..., p, the OLS coefficient matrix estimates. Again, the lag augmentation order in

(5.4) can be selected in practice by using a standard information criterion, setting the minimum
possible lag length allowed to be one. The multiple predictor residual augmented IVX estimator

vector is then defined as

T—1 —lr_1
~trfires ~trf,(h) ~trf,(h ~trf,(h) [ - Al
Bhive = (Z Ztrf( )Ztrf( )/> Z ztrf( )<yt+1 - "Y/Vt—i—l)

t=p t=p
T—h 171
_ n)(_ TN
i <z> > = (e = Ao, 5)
t=1 t=p
T

where z; is a K x 1 vector of instruments with elements as defined in (3.6) for each predictor in x;

T—1 -1 /7—h
éirfr(h) = ( Z Zirfj(h),z;rﬂ(h)/) < Z ztjzl> z:Tf’(h) (56)
t=p t=1

is a K x 1 vector of instruments, whose elements are obtained by applying the

and

in which zirf (1)

definition in (4.4) to each element of z;.
. . . . ~trf, .
For inference purposes we need to estimate the covariance matrix of ,Bhr’{v;es. This can be done

by using the familiar “sandwich” formula,

—_—
~trf,res

Cov (/Bh,iv:r: ) = BEIMT (BEI)

/

(5.7)
where By := ZtT;Ih zt:T:I/ and
T—1 _trf,h _trf,(h)! A T—1 _trf,h 35/ T-1 5 — -1
My = t=p Ztrf ztrf( )€t+1 + [7/® <% thp ztrf Xt,K> (thp X'ZKXLK) } X
—1
1. a 5 a . 13 i 1 3 trf,(h
X (ZtT:p Dy © Xt,KX;,K) [’Y ® (ZtT:pl Xt,KX;,K> (% Z?:pl X,z )/)}

where X ¢,k is the vector formed from stacking the p lags of each of the K demeaned regressors;
that iS, XtyK = (53@1, e i’t’]{, j’t—l,l; - ajt—l,Ka - 7£t—p+1,17 - 757t—p+l,K),-

e C . . ~trf, . .
The limiting distribution of B}:{@;es is normal in the case where the elements of x; are weakly

persistent and mixed normal in the case where they are strongly persistent; the proofs are simple
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multivariate extensions of the results from the single-regressor case given in section 4.3 and are
therefore omitted. More importantly, the associated individual and joint significance tests on the
elements of 3, have standard normal (if one linear restriction is being tested using a t-type ratio)
and x? (for multiple restrictions) limiting null distributions irrespective of whether the elements
of x; are weakly or strongly persistent, and regardless of any heterogeneity present in the DGP,

provided the heteroskedasticity-robust covariance matrix estimator in (5.7) is used.

6 Numerical Results

6.1 Set-up

In this section, we report the results from a Monte Carlo study exploring the finite sample per-

formance of the residual augmented transformed regression based long-horizon predictability test,

tzr{;;es, from section 4.2. We will compare the finite sample performance of this test with the
Bonferroni-based test, tfonf , of Hjalmarsson (2011) outlined in section 3.1, the implied test, ¢\ %,

rev,PL
h,ivx

Phillips and Lee (2013) outlined in section 3.3. We also considered the unaugmented transformed

of Xu (2020) outlined in section 3.2, and the reversed predictive regression based test, ¢ , of

trf,res
h,ivx

regression test, tzrlfv ., defined in (4.7) but we found that this did not perform as well as the ¢

rev,PL

hive  test), and so we only report

test (its performance was in fact very similar to that of the ¢

trf,res

hive - Empirical size results are reported in section 6.2 and empirical power properties

results for ¢
in section 6.3. A number of additional Monte Carlo results are also presented in the supplementary
appendix.

For all of the reported experiments, data is generated from (2.1)-(2.2). All of the tests considered
are for the null hypothesis of no long-run predictability Hy : 85 = 0 in (2.8). We will consider
tests directed against both one-sided (left-tailed tests for H; : 85 < 0, and right-tailed tests for
Hy : B, > 0), and two-sided alternatives (Hy : S # 0). All tests are run at the 5% nominal
(asymptotic) significance level. The simulations were preformed in MATLAB, version R2020a,
using the Mersenne Twister random number generator function using 10000 and 5000 Monte Carlo
replications for the empirical size and empirical power simulations, respectively.

In implementing the tf‘mf test, we follow the steps outlined in Hjalmarsson (2011), however, we
use the GLS detrended ADF approach as suggested in Campbell and Yogo (2006a) to compute the
confidence interval for ¢ instead of Chen and Deo (2009) because it gave better results. With the
exception of the IVX instrument, z;, all variables entering the estimated predictive regressions are
demeaned. As discussed in Kostakis et al. (2015, p. 1514) the IVX instrument z;, does not need
to be demeaned because the slope estimator in the predictive regression is invariant to whether z;

is demeaned or not. For implementation of the residual augmented transformed regression based

trf,res
h,ivx

where p was chosen applying the AIC over p € (1, ..., |4(7/100)}/*]. The resulting residuals, 7,1

predictive test statistic ¢ in (4.10) we start by estimating an autoregressive model of order p,

are then used to compute g1 — 99441, from a regression of g1 on .
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6.2 Empirical Size

In this section we investigate the finite sample size properties of our proposed tg’{ﬁes test with

the tf‘mf, X% and 7Pl test.5 To that end, we generate data from (2.1)-(2.2) with 8, = 0.

hive
In generating the simulation data we set the intercepts, a; and py, in (2.1)-(2.2), respectively, to
zero without loss of generality. The autoregressive process for x; was generated as in (2.2) with
p=1+¢/T for c € {0,—5,—-10,—20, —50} and was initialized at {x = 0. Results are reported for
samples of length T" = 250 and T = 500.

We allow the innovations driving the predictor process in (2.2) to either be serially uncorrelated
or to follow an AR(1) process; in particular we set vy+1 = vy 41441, and consider ¢ € {—0.5,0,0.5}.

The innovation vector (usi1,v41) in (2.1)(2.2) is drawn from an i.i.d. bivariate Gaussian distri-

2
. . . . o pouo
bution with mean zero and covariance matrix’ ¥ : = v u2 ” |, where ¢ corresponds to
pouo, 0,
the correlation between the innovations usy1 and viq. In our analysis we set ¢ = —0.95.% Tables

1, 2 and 3 report results for ¢ = 0, ¢ = 0.5, and ¥ = —0.5, respectively.

The results in Tables 1-3 clearly show the superiority of the IVX-based tests, t',fl’:{;;es and tZ?U’fL,
over the non-IVX based tf'mf , tff “ tests in terms of controlling size across both strongly and weakly
persistent predictors. Taking the case where ¥ = 0 to illustrate, it is seen from the results in Table
1, which are for the case where v, 1 is serially uncorrelated, that the empirical rejection frequencies
of the two-sided t';zi’};es and t’,ff&fL tests when h < 20, for T = 250 are in the range [0.032,0.061] and
[0.037,0.061], respectively, and for T' = 500 in the range [0.030, 0.058] and [0.047, 0.062], respectively,
taken across all of the values of ¢ considered. For h = 50 these two approaches become slightly
conservative with the empirical rejection frequencies of both procedures decreasing to [0.020, 0.030]
and [0.027,0.041], respectively when T' = 250, and to [0.028,0.041] and [0.043,0.051], respectively,
for T' = 500. Interestingly, a comparison of the results in Table 1 with those in Tables 2-3 shows
that these results change very little when the innovations v.41 are positively () = 0.5) or negatively
(¢ = —0.5) autocorrelated. While the two-sided t’;:{;ges and tZijfl;xPL tests both show good finite
sample size control it can be seen from the results in Tables 1-3 that when considering one-sided
alternatives (Hy : f, < 0 and H;y : f > 0) the t’;:{;;es tests display considerably better finite

sample size control than the tzefl;fL tests. This is particularly evident in the case of the right-sided

trf,res
hiive

frequencies, taken across all of the results in Tables 1-3, in the range [0.028,0.071] for 7' = 250
and [0.046, 0.069] for T = 500, the right-sided version of £;°>""* displays significant over-sizing when

hiivze

tests. To illustrate, while the right-sided version of the ¢ test displays empirical rejection

¢ > —20, regardless of T', h or 1, with empirical size generally close to or in excess of 10%. In contrast

the left-sided versions of these tests display conservative behaviour, which is a common characteristic

SWe are grateful to Kei-Li Xu for making code for computing his test available on his website https://sites.
google.com/site/xukeli2015/research.

" Additional results are reported in the supplementary appendix for the cases where: (i) (u¢+1,v¢+1) is conditionally
heteroskedastic with a GARCH(1,1) formulation characterising the volatility dynamics, and (ii) the unconditional
variances of uty+1 and vey1 are allowed to display a one-time break at 7/2. The results for (i) (see Table S.1) are
qualitatively similar to those reported here for i.i.d. innovations for all of the tests reported. For (ii) (see Table ?7?),
for both ¢/"/7¢* and tﬁfv’fL the size results are again very similar to those for the i.i.d. case, while for t2°" X"
additional size distortions relative to the i.i.d. case result.

8Notice that because we report results for both left-sided and right-sided tests we do not need to report results for
the case where ¢ = 0.95 because, as noted in Campbell and Yogo (2006a), flipping the sign of ¢ also flips the sign
of 3. Consequently, the empirical size and power properties for the left-sided and right-sided implementations of any
given test in what follows for ¢ = —0.95 will be identical to those for the right-sided and left-sided implementations

of those tests, respectively, for ¢ = 0.95.
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of IVX-based predictability tests; see, for example, Demetrescu et al. (2021)). In general, however,

the degree of undersizing observed in the left-tailed IVX-based tests is less pronounced, often very

rev,PL

significantly so, for t',f:{;;es than it is for ¢,

In contrast to the IVX-based tests, the empirical rejection frequencies of the thX“ test are very
sensitive to the strength of the persistence of the predictor. For example, in Table 1 it can be
seen that for h < 5 the thX“ test displays substantial size distortions when ¢ > —10, regardless
of the sample size and for both one-sided and two-sided implementations of the test. The finite
sample behaviour of the one-sided and two-sided tff“ tests become generally more erratic when
the innovations v¢11 are autocorrelated, and are particularly unreliable in the case of negatively
autocorrelated vy 1; see Table 3. We recall from the discussion in section 3.2 that the t})l(“ test is
not valid when v;11 is autocorrelated and these results illustrate this well.

The tfonf tests display empirical rejection frequencies close to the nominal significance level of
5% considered, for both one-sided and two sided implementations, in the case where vy 1 is serially
uncorrelated (Table 1), for ¢ > —20 and h < 20. As discussed in section 3.1 this test is based on
the assumption that the predictor is strongly persistent and so the deterioration in the empirical
rejection rates for ¢ = —50 is to be expected. Perhaps most striking, however, is the highly erratic
behaviour of the tfonf tests when the innovations v;41 are autocorrelated (Tables 2 and 3). Here
the tf‘mf tests can be either massively over-sized, with size sometimes in excess of 50%, or massively
under-sized. On the basis of these results this approach would appear to be too unreliable to use
in empirical applications.

We can conclude from the results in Tables 1-3 that only the IVX-based long-horizon predictabil-

trf,res and #7¢Y

hiv h,ivav display reliable enough finite sample size control across predictors whose

ity tests, ¢
degree of persistence is unknown and which are not driven by uncorrelated innovations to be em-
pirically useful. The Bonferroni-based tfonf test and the t,)l(“ test of Xu (2020) are too unreliable
to be used in practical applications. Of the t;ﬁ{i’};es and tq,ffv’fL tests our results suggest that the

former delivers significantly better finite sample size control.

6.3 Empirical Power

trf,res

In this section we will compare the finite sample power properties of the left- and right-sided ¢, ;>

and t;f;;’fL tests.” Because of the highly unreliable size properties of the tfonf and thX “ tests reported
in section 6.2 we will not include these tests in our comparison. However results for these tests can
be found in the supplementary appendix. In order to investigate the finite sample power properties
of the t';:{l’];es and tg?fv’fL tests we simulate data from (2.2)- (2.1) under the alternative hypothesis
Hy :=b/T, across the following values of the drift parameter, b € {—15, —14.5, —14, ..., 14,14.5,15}.
The innovations (1, l/t+1)/ were generated as described in section 6.2 with results reported only
for ¢» = 0.5; results for v € {—0.5,0} are qualitatively very similar and can be found in the
supplementary appendix. We again report results for ¢ = —0.95 (cf. footnote 8), for prediction
horizons h = {1, 5,10, 20,50} and for five values of the persistence parameter, ¢, associated with x;
specifically, ¢ = {0, =5, —10, —20, —50}. Figures 1-4 plot simulated finite sample local power curves
for each of the prediction horizons considered h = 1,5, 10,20 and 50. These provide the simulated
finite sample power curves for the left-sided (Figures 1 and 3) and the right-sided (Figures 2 and 4)

9To save space we do not report power curves for the corresponding two-sided tests as these can essentially be
inferred from the power curves of the left- and right-sided tests.

22



trf,res and trev,PL

h,ivx h,ivx tests.

versions of the ¢

trf,res rev,PL
h,ivx and th,ivz

tests against Hy : B, < 0. It is clearly seen from these figures that the left-sided t';f{z’);es test
rev,PL oot and that this holds

h,ivx

regardless of the prediction horizon or the strength of persistence of the predictor. It can also be

Consider first Figures 1 and 3 which plot the power curves of the left-sided ¢
displays significantly superior power performance than the left-sided ¢

seen from Figures 1 and 3 that for both tests power decreases as ¢ decreases (i.e. as the persistence
of the predictor weakens), other things being equal. This pattern is to be expected as the signal
from the predictor becomes stronger the more persistent is the predictor, z;. Finally, we observe

trf,res rev,PL

that the power superiority of ¢, ;> ™ over t,”. "~ generally becomes more pronounced as h becomes

larger, other things equal.

Turning to the right-sided tests in Figures 2 and 4 we observe that the tzefl;fL test displays
somewhat higher empirical rejection frequencies than t';:{;;es for ¢ = 0,—5,—10. However, this is

rev,PL

an artifact of the significant over-sizing seen with the ¢, ~

test in these scenarios; see Tables 1-3.

Indeed, when we compare the power properties of the two tests for ¢ < —10 and h > 10 where their
trf,res

empirical sizes are broadly comparable, we observe that ¢, :° = tends to display superior power to
thZ}’fL. Again, as h becomes larger tf:{;};es tends to perform better than t;‘j’z}’fL; for example for

h = 50 we see that tzrlfq;;es is generally more powerful than tzefv’fL for ¢ < —5 even though the latter

is rather oversized for ¢ = —5, ¢ = —10 and ¢ = —20.

7 Empirical Application

Exchange rate predictability has been a topic of considerable interest in the international finance
and macroeconomics literature. Following the seminal work of Meese and Rogoff (1983), a long
held view is that forecasts based on macroeconomic fundamentals cannot outperform a random
walk benchmark; see Rossi (2013) for a survey of the literature. To overcome this exchange rate
puzzle, several alternative approaches have been considered which include: analysis of the behavior
of exchange rates in present-value models (Engel and West, 2005); use of nonlinear methods, such
as for example the exponential smooth transition autoregressive model (Kilian and Taylor, 2003),
and the use of time-varying parameter models (e.g., Rossi (2007) and Byrne et al., 2016).

Engel and West (2005) and Engel et al. (2007) illustrate that models that can be cast in a
standard present-value asset pricing framework imply that exchange rates are approximately random
walks. Engel et al. (2007), Molodtsova and Papell (2009), and Rossi (2013) find that empirical
exchange rate models conditioned on information sets from Taylor rules can outperform the random
walk benchmark in out-of-sample forecasting, particularly at short-horizons. However, Rossi and
Sekhposyan (2011), detect significant instabilities in models that employ classic and Taylor rule
fundamentals. Although, there have been attempts to account for time-variation in parameters
when forecasting exchange rates, Rossi (2013) and Rogoff and Stavrakeva (2008) argue that the
problem has not been fully resolved. Analysing exchange rate dynamics in the period before and
after the 2008 turmoil, Mumtaz and Sunder-Plassmann (2013) observe high volatility in exchange
rates in recent years. Similarly, Taylor (2009) argues that prior to the Global Financial crisis the US
Federal Reserve conduct of monetary policy was characterized by a non-linear Taylor rule and after
the crisis central banks around the world adopted unconventional monetary policy when confronted
with the zero lower bound constraint on nominal interest rates.

The exchange rate literature provides, at least two reasons for the often poor behaviour of many
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of the models used. First, the poor forecasting performance of exchange rate models is, to some
extent, explained by estimation error and not just misspecification error (Engel et al., 2007). The
significant role of estimation error is confirmed, among other things, by the relative good forecasting
performance of economic models estimated with large panel datasets (Mark and Sul, 2001; Engel
et al., 2007; Ince, 2014) or long time series (Lothian and Taylor, 1996). The second reason for
reservations about the usefulness of exchange rate models comes from the evidence in favor of the
PPP model. According to Taylor and Taylor (2004), the exchange rate literature has turned full
circle to the pre-1970s view that PPP holds in the long run. The mean reverting nature of real
exchange rates has found support from panel unit root tests (Sarno and Taylor, 2002), however only
a small number of studies have tested whether the mean-reverting properties of the real exchange
rate can be exploited in a forecasting context.

A number of studies have been more skeptical about what is typically dubbed the “Rogoff
consensus”. For example, Kilian and Zha (2002) propose a prior probability distribution based on
a survey of professional international economists and derived a posterior probability distribution of
the half-life PPP deviation on the basis of a Bayesian autoregressive model. In similar vein, Murray
and Papell (2002) stress how univariate methods provide virtually no information on the size of
half-lives. Finally, a large cross-country heterogeneity in terms of point estimates and confidence
intervals has also been found by Murray and Papell (2005) and Rossi (2006).

Notwithstanding the pioneering study of Meese and Rogoff (1983), which shows the superiority of
the random walk model in out-of-sample exchange-rate forecasting, there is evidence that exchange
rate movement may be predictable at longer time horizons. In this section we apply the transformed
residual augmented regression tests developed in section 4 to the problem of testing for long-horizon
nominal exchange rate and relative price predictability. In particular, we will revisit the recent study
of Eichenbaum et al. (2020) [henceforth EJR] who document that: (i) current real exchange rates
(RER) predict nominal exchange rates (NER) in the long-run;'” (ii) RER is a poor predictor of
future inflation rates, and (iii) that these regularities depend on the monetary policy regime in effect.
Defining the RER as the price of the foreign-consumption basket in units of the home-consumption
basket, and the NER as the price of the foreign currency in units of the home currency, EJR
further observe that current RER is strongly negatively correlated with future changes in NER and
that this correlation increases with the prediction horizon, and that RER is virtually uncorrelated
with future inflation rates at all horizons. These empirical observations suggest that RER adjusts
to shocks in the medium and long run overwhelmingly through changes in NER, not through
inflation rate differentials. We revist the predictive power of RER for predicting changes in NER
and future inflation rates across 45 countries. As indicated by EJR, if monetary policy seeks to
limit the volatility of the NER, then RER should converge to its unconditional mean primarily via
inflation differentials rather than through sustained predictable movements in the NER. Thus, our
contribution to this literature is to provide further evidence on the stylised features of exchange
rate predictability using the new long-horizon predictability tests developed in this paper to provide
evidence on the usefulness of current RERs as predictors of future changes in NERs and inflation

differentials.

Mark (1995) and Engel et al. (2007) have also found evidence of predictability of NER at medium and long
horizons; see Rossi (2013) for a survey.
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7.1 Data

In our empirical analysis we use a similar data set to that considered in EJR, but our sample
datset contains both a larger group of countries and a larger sample size. All of the data used
are obtained from the International Financial Statistics of the IMF and covers the period from
1973:Q1 to 2020:Q1. Our analysis will be conducted over four different sample periods: (i) the full
sample - 1973:Q1 to 2020:Q1; (ii) from 1973:Q1 to 2008:Q4; (iii) from 1990:Q1 to 2008:Q4; and
(iv) from 1999:Q1 to 2020:Q1. Our sample includes 45 countries split into two groups according
to the MCSI classification namely developed markets and emerging markets; see https://www.
msci.com/market-classification. The developed markets group comprises: Australia, Austria,
Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy, Japan,
Luxembourg, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland,
and United Kingdom. The emerging markets group comprises: Brazil, Bulgaria, Chile, China,
Colombia, Czech Republic, Egypt, Greece, Hungary, Iceland, India, Indonesia, Korea, Mexico,
Peru, Philippines, Poland, Romania, Russian Federation, South Africa, Thailand, and Ukraine.

Notice that although the overall sample period for analysis considered was from 1973:Q1 to
2020:Q1, the samples for some of the countries we consider are slightly smaller due to lack of
available data at the beginning and/or end of the sample. Specifically, for Hungary and Iceland
the sample starts in 1976:Q1, for Brazil and Poland in 1980:Q1, for Hong-Kong in 1980:QQ4, for
China in 1986:Q1, for Romania in 1990:Q4, for Bulgaria in 1991:Q1, for the Czech Republic and
the Ukraine in 1993:Q1 and finally for the Russian Federation in 1995:Q2. Moreover, for Egypt
and the Ukraine the ending dates are also shorter than for the rest of the countries in the sample
(2019:Q3 and 2019:Q4, respectively).

7.2 Empirical Results
7.2.1 The Nominal Exchange Rate Long-Horizon Predictive Regression

The NER long-horizon predictive regression consider by EJR is given by,

NER; 111,

log (NE;%% = ozf-\/lER + ,B%ERlog(RERit) + uf\ﬁf (7.1)
(2

where i corresponds to the country under analysis and h is the prediction horizon (in quarters),

h ={1,4,8,12,20}. The predictor is the real exchange rate of country ¢ relative to the U.S,, which

we define as RER;;,"" which is computed as

P.
RER; := NERy - (7.2)
Py
where NER;; is the average quarterly nominal exchange rate (domestic currency per U.S. dollar)
and P; and Pj; denote the consumer price index (CPI) for all items in the U.S. and in country i,
respectively.

In our analysis, to provide an indication of the strength of persistence of the RE R;; predictors,

1The RER between two countries may be defined as the relative price of one country’s consumption basket in terms
of the consumption basket of the other country.
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we estimate the following augmented Dickey-Fuller regression for each country,

p
RERy = off*" 4+ pfPRRER; 1 + ) 6ARER;;_j, + vji"R, i =1,..,45 (7.3)
k=1

where for each series p is determined based using the AIC information criteria with a maximum
lag order determined by Schwert’s rule, [4(7/100)'/4]; for country i we denote this selected lag
length as p;. We report the resulting OLS estimate of pft£% denoted pf*EE | for each country under
analysis. We also report for each country an estimate of the contemporaneous correlation between
the innovations, ¢;, (under the assumption that this is constant) based on the OLS residuals from
estimating the short-horizon predictive regression, (7.1) for h = 1, and the OLS residuals from

estimating (7.3); specifically,

R T _ T—1 NER;RER
i = ( pi)” Zt =p; Wi t+1 Vi t+1 (7.4)

@ = D) TSI GNERR) (T~ p) S N2

EJR assume that RER is mean reverting (weakly persistent) and highlight a number of features
they observe from the estimation of the predictive regression in (7.1) by OLS. Their analysis is
based on testing for long-horizon predictability by comparing the conventional OLS t¢-statistic from
(7.1) computed with Newey-West standard errors, which we will denote by thN W with critical values
from the standard normal distribution. As is well known and is discussed in section 2.2 these tests
are not theoretically valid and likely to spuriously reject the null hypothesis if RER is strongly

pRER reported in Tables 4 - 7 suggest that for most of the countries

persistent. The estimates of p;
considered RER is indeed strongly persistent with an estimated autoregressive root very close to
unity. We observe, for instance, that in general for all countries p##% > 0.953 when considering
the sample from 1973:Q1 to 2020:Q1 (except of the Russian Federation, where p*¥% = 0.898);
pRER > 0.932 in the sample from 1973:Q1 to 2008:Q4 (except for the Russian Federation and
Ukraine, where pftFf = 0.868 and pf*FF* = 0.853, respectively); pRER > O 910 from 1990:Q1 to
2008:Q4 (except for Peru, the Russian Federation and Ukraine, where pf**% = 0.666, p*FF = 0.868
and p*PR = (0.853, respectively); and finally p*#% > 0.918 from 1999:Q1 to 2020:Q1 (except for
Korea where pR*FR = (.887).

Based on the outcomes of t}ly W tests, EJR strongly support the conclusion that current RER is
highly negatively correlated with changes in future NERs at horizons of three or more years. These
results are consistent with those obtained by Cheung et al. (2019) using vector error-correction
models. Furthermore, EJR also found that RER only predicts the nominal rate in currencies of
countries with floating exchange rates, meaning the price of the country’s currency in U.S. dollars
is allowed to float according to supply and demand; and that the central banks of the two countries
must follow an inflation-targeting policy (i.e., country ¢ must be willing to adjust interest rates to
keep the inflation rate around a target value). Our analysis and the way the different samples are
organised looks to provide further evidence concerning these previous findings. Finally, one result
that is mentioned by EJR which requires further analysis relates to the increase in the absolute value
of ﬂN ER a5 h increases since as observed in section 2.2 this may be an artifact of the aggregation
when estimating long-horizon predictive regressions; see Equation (2.8).

EJR base their analysis on a benchmark group of six countries - Australia, Canada, Germany,
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New Zealand, Sweden, and the UK, which (other than Germany) had adopted inflation targeting
before 1997. We consider the 45 countries listed above, most of which adopted inflation targeting,
but at a later stage than the benchmark group considered in EJR. Many of these countries adopted
this policy in 1999 and a few between 1999 and 2005; see Ilzetzki et al. (2017) for details.

In Tables 4 - 7, for the various sample periods discussed above, we report for each country

trf trf,res
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tests from section 4. We also report the ;2" test of Phillips and Lee (2013). The IVX-based

h,ivx

tests were implemented exactly as detailed for he simulation study in section 6. Although we report

considered and for each horizon h, the thN W test as well as our new IVX-based ¢

results for the tﬁbv W test, these should therefore be treated with great caution given the strength of
persistence in the predictors used, discussed above. As suggested in EJR, the Newey-West standard
errors in the reported thN w
of lags to h 4 8.12

Consider first the full sample results in Table 4. Here we observe negative outcomes for the IVX-

statistics were computed using the Bartlett kernel and setting the number

based statistics for almost all of the countries (the exceptions are a small number of the emerging
markets nations) for all of the values of h considered. This entails that the IVX estimates of the
BZZXER slope coefficeints are negative, albeit many are these tests outcomes are not statistically
significant. These findings support EJR’s conclusion that current RER and changes in future NERs
are negatively correlated. The results in Tables 5 - 7 suggest that this finding also appears robust to
the sample period considered. In addition to the observation that the outcomes of the IVX-based
statistics are mostly negative, we also observe that the estimated innovation correlations, qgi, are

positive for all of the countries and are generally very high. As the Monte Carlo simulation results

in section 6.2 demonstrate (recalling footnote 8), this is precisely the case where the left-sided tg{m
and t;ffv’fL tests will be significantly oversized, while our preferred residual-augmented tZT{{);es test

trf,res

is approximately correctly sized. We might therefore expect to see fewer rejection with the ¢, 5"

test than with the ¢/ and ¢"°0FF

hive hive  tests, and that should be borne in mind in the discussion which

follows.
Overall, the results in Table 4 provide increasing evidence of predictability as h increases. This
is particularly, noticeable in the top panel which contains the results for the developed markets

nations, where an increase in the number of statistically significant cases is observed for larger h.

tNW trf,res
h

However, we also note that the number of rejections is largest for and s