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Is there any predictability in the equity premium?
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Dividend yield: Forward Recursive IV regression estimates and pointwise
CIs, 1950-2017 (Goyal/Welch 2008 updated monthly data).
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... what about the persistence of the predictor?
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The equity premium looks very mean reverting etc (almost noise), but the
dividend yield looks strongly persistent (usual ADF test has p-value of
0.41).

3 of 73



Outline

1. Background and Summary of Contributions

2. The (Episodic) Predictive Regression Model

3. IVX Predictability Tests

4. Finite Sample Simulations

5. Empirical Illustration

6. Concluding Remarks

4 of 73



Moving on to ...

1. Background and Summary of Contributions

2. The (Episodic) Predictive Regression Model

3. IVX Predictability Tests

4. Finite Sample Simulations

5. Empirical Illustration

6. Concluding Remarks



Trouble in paradise

Consider the predictive regression

yt = α+ βxt−1 + ut

where

xt = ρ xt−1 + vt,

with (ut, vt)
′ ∼ iid(0,Σ) where

Σ = E

((
ut
vt

)(
ut vt

))
=

(
σ2
u σuv

σuv σ2
v

)
.

Null hypothesis: xt−1 does not predict yt, i.e.

H0 : β = 0 .

Yet, even in this simplest setup...
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Endogeneity and (high) persistence

Should

I the shocks ut and vt correlate (so that φ := σuv/σuσv 6= 0; for the
EP-DY data above this correlation is estimated to be φ̂ = −0.98),
and

I the regressor xt be autocorrelated,

one speaks of endogeneity. (A bit of a misnomer.)

Under endogeneity and high persistence (near integration, ρ = 1− c/T),

I the OLS estimator is 2nd order biased and

I the t-statistic has a non-normal limiting distribution.

See Elliott/Stock (1994), Stambaugh (1999), Campbell/Yogo (2006) etc.

No problem when regressors are stationary or weakly persistent.
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Trouble brewing - OLS t-statistics, T = 305
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More trouble with variance breaks - volatility of both
shocks 3 times higher in the �rst 20% of the sample ,
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Feasible solutions

If ρ were known, one could employ GLS estimation. For unknown ρ:

I Bayes methods - Elliott/Stock (1994)

I Bonferroni - Campbell/Yogo (2006), but see Phillips (2012)

I Restricted log-likelihood - Jansson/Moreira (2006), Chen/Deo (2009)

I Almost optimal tests - Elliott et al. (2015)

I Variable addition - Toda/Yamamoto (1995), Dolado/Lütkepohl
(1996)

I Generic IV estimation, including 2SLS methods -
Breitung/Demetrescu (2015) [BD]

I Extended IV - or IVX - method of Kostakis et al. (2015) [KMS]
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What we do in this paper

• Our focus in this paper is on IVX-based solutions which are becoming
increasingly popular in the literature on return predictability.

• Under certain regularity conditions on the innovations, ut and vt, KMS
establish that the IVX estimator is mixed normal and that the associated
IVX-based predictability tests (t, F , and Wald type tests) have standard
pivotal limiting null distributions, regardless of the degree of persistence
or endogeneity of the predictor.

• In this paper we extend the IVX-based approach in three key directions:
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Contribution I

• KMS assume that the innovations, ut and vt, are unconditionally
homoskedastic. They allow for some conditional heteroskedasticity
(provided White ses are used in the test statistics). In particular, although
a relatively weak martingale di�erence assumption is placed on vt, ut is
assumed to follow a �nite-order parametric GARCH model. A
consequence of this is that it imposes the absence of any dependence of
the conditional variance of the regression errors on lagged values of the
innovations driving the predictor. This is arguably unrealistic for many
predictors used to predict stock returns.

• We show that the IVX statistics (with White ses) continue to admit
standard pivotal limiting null distributions under considerably weaker
assumptions on the innovations. In particular, we allow for quite general
forms of conditional and unconditional heteroskedasticity in the joint
innovation process, not tied to any parametric model.
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Contribution II

• The asymptotic theory for IVX predictability statistics is known to
provide a poor approximation to their �nite sample behaviour, particularly
for highly persistent and endogenous predictors which is of course the case
of primary practical relevance. We develop asymptotically valid bootstrap
implementations of the IVX tests. We investigate both �xed regressor
wild bootstrap [FRWB] and residual wild bootstrap [RWB] resampling.

• Monte Carlo simulations show that, in particular the RWB, bootstrap
methods we propose can deliver considerably more accurate �nite sample
inference than the asymptotic implementations of these tests under
certain problematic parameter constellations, most notably for their
implementation against one-sided alternatives, and where multiple
predictors are included.
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Contribution III

• The IVX methodology has recently been applied to Fama regressions in
the context of detecting episodic bubble-type behaviour in Pavlidis et al.
(2017). They use a rolling subsample-based implementation of one-sided
IVX statistics and reject the no bubble null hypothesis if any of the
subsample statistics in the rolling sequence exceeds a given critical value.
To avoid the inherent multiple testing bias, they use a Bonferroni
correction but note that this leads to highly conservative tests

• Tests based on the suprema of rolling and recursive subsample
sequences of the 2SLS predictability statistics of BD are used to detect
temporary periods of stock return predictability in Demetrescu et al.

(2021). We show that both the RWB and FRWB approaches can also be
implemented in the context of the corresponding tests from sequences of
subsample IVX statistics under the same regularity conditions as for the
full sample tests. Moreover, unlike the 2SLS-based tests, these can be
implemented as either one-sided or two-sided tests for the presence of
temporary windows of predictability.
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Episodic Predictability

Consider the time-varying DGP

yt = α+ βtxt−1 + ut, t = 1, . . . , T (1)

where the scalar predictor (extensions for multiple predictors are
straightforward and given in the paper) xt satis�es the DGP

xt = µx + ξt, t = 0, . . . , T (2a)

ξt = ρ ξt−1 + wt, t = 1, . . . , T (2b)

in which ξ0 = Op(1) and where wt is assumed to follow the pth order
stable autoregression:

A(L)wt = vt, A(z) := (1− a1z − a2z
2 − · · · − apzp).
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Uncertain Persistence

Assumption 1

One of the following two conditions is assumed to hold:

1. Weakly persistent predictors: The autoregressive parameter ρ in

(2) is �xed and bounded away from unity, |ρ| < 1.

2. Strongly persistent predictors: The autoregressive parameter ρ in

(2) is local-to-unity with ρ := 1− c
T where c is a �xed non-negative

constant.

The literature uses both equally often, but the resulting asymptotics di�er.
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Time-Varying Features I

Assumption 2

In the context of (1) and (2), let βt := n−1
T b (t/T ) , where b(·) is a

piecewise Lipschitz-continuous real function on [0, 1], with nT =
√
T

under Assumption 1.1, and nT = T under Assumption 1.2.

We may reformulate the null hypothesis stated previously as

H0 : The function b(τ) is identically zero for all τ ∈ [0, 1]. (3)

We can now also formally specify the alternative hypothesis as,

H1,b(·) : b(·) is non-zero over at least one non-empty subinterval of [0, 1].
(4)
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Time-Varying Features II

I Under the null hypothesis, H0, yt is not predictable by xt−1 in any
subsample.

I Under the alternative hypothesis, H1,b(·), there exists at least one
subset of the sample observations (this need not be a strict subset,
so it could contain all of the sample observations) comprising
contiguous observations and for which βt 6= 0. A predictive episode,
often termed a pocket of predictability. The size of this subset is
proportional to the sample size T .
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Time-Varying Features III

Assumption 3

Let

(
ut
vt

)
:= H(t/T )

(
at
et

)
,

(
at
et

)
∼WN (0, I2) , where:

1. H(·) :=

(
h11(·) h12(·)
h21(·) h22(·)

)
is a matrix of piecewise

Lipschitz-continuous bounded functions on (−∞, 1], which is of full

rank at all but a �nite number of points;

2. ψt := (at, et)
′ is a L4-bounded stationary and ergodic martingale

di�erence sequence satisfying E(ψtψ
′
t) = I2 and

E‖E0
∑T

t=1(ψtψ
′
t − I2)‖2 = O(T 2ε) for some ε < 1

2 , with E0(·)
denoting expectation conditional on {ψ−i}∞i=0 and Ik denoting the

k × k identity matrix.
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Key aspects of Assumption 3

I Assumption 3.1 allows for quite general unconditional time
heteroskedasticity in the innovations through the function H,
whereby the unconditional covariance matrix of (ut, vt)

′ is given by
H(t/T )H′(t/T ). This allows both ut and vt to display time-varying
unconditional variances and for both contemporaneous and
time-varying (unconditional) correlation between ut and vt.
Empirically plausible models of single or multiple (co-) variance
shifts, (co-)variances which follow a broken trend, and smooth
transition (co-) variance shifts are all permitted under this
assumption. In contrast, KMS impose a constant unconditional
variance matrix on (ut, vt)

′.

I Assumption 3.2 imposes a martingale di�erence [MD] structure on
ψt thereby allowing for conditional heteroskedasticity. In common
with Assumption INNOV of KMS, Assumption 3.2 imposes �nite
fourth-order moments on ψt.
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Key aspects of Assumption 3

I To establish the large sample properties of the IVX tests of KMS in
the strong persistence case we need to develop a weak convergence

result for 1√
T 1+η

∑bτT c
t=1 zt−1ut.

I For the case of full-sample sums, in order to do so KMS make the
parametric assumption that ut is generated by a stationary
�nite-order GARCH(p, q) model with �nite fourth moments. This
assumption therefore has the unfortunate consequence that it
imposes the absence of any dependence of the conditional variance
of ut on lags of vt which is likely to be unrealistic for many predictors
used to predict stock returns.

I Moreover, a number of authors, including Carnero et al. (2004) and
Johannes et al. (2014) argue that ARSV models capture the main
empirical properties of the volatility of �nancial returns series better
than GARCH models.
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Key aspects of Assumption 3

I To eliminate the need to choose a speci�c parametric volatility
model, Assumption 3.2 instead adopts an explicit assumption of
martingale approximability whereby

E‖E0

T∑
t=1

(ψtψ
′
t − I2)‖2 = O(T 2ε)

for some ε < 1
2 , see Merlevede et al. (2006). The exponent ε

controls the degree of persistence permitted in the conditional
variances of the innovations.

The (Episodic) Predictive Regression Model 23 of 73



Key aspects of Assumption 3

I Stationary vector GARCH processes with �nite fourth-order moments
satisfy Assumption 3.2 with ε = 0, but the assumption is
considerably more general as it also allows for asymmetric e�ects in
the conditional variance.

I Stationary ARSV processes also satisfy Assumption 3.2.

I Assumption 3 is very similar to the assumptions made on (ut, vt)
′ by

Demetrescu et al. (2021) who develop subsample implementations of
the 2SLS IV tests of Breitung and Demetrescu (2015). Notice, with
2SLS tests we don't have to worry about the asymptotic behaviour

of 1√
T 1+η

∑bτT c
t=1 zt−1ut in the strong persistent case as their Type-II

instrument (eg a sine function of time) is chosen there not the IVX
(Type-I) instrument.
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The IVX Instrument

KMS develop asymptotically valid methods of estimation and inference in
the context of (1)-(2) based on the use of the mildly integrated IVX
instrument

zI,t :=

t−1∑
j=0

%j∆xt−j = (1− %L)−1
+ ∆xt

where % := 1− aT−γ with γ ∈ (0, 1) and a ≥ 0.
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The IVX trick applied to a random walk - using a = 1,
γ = 0.95 as in KMS
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The Full Sample IVX Test of KMS I

The full-sample IVX-based t-ratio of KMS for testing H0 : βt = β = 0 for
all t = 1, ..., T , instruments the endogenous predictor xt−1 with the IVX
instrument zI,t−1, and is given by

tzx :=
β̂zx

s.e.(β̂zx)
(5)

where β̂zx is the IVX estimator of β,

β̂zx :=

∑T
t=1 zt−1 (yt − ȳ)∑T

t=1 zt−1 (xt−1 − x̄−1)
(6)

with ȳ := T−1
∑T

t=1 yt and x̄−1 := T−1
∑T

t=1 xt−1, and

s.e.(β̂zx) :=

√
σ̂2
u

∑T
t=1 z

2
t−1∑T

t=1 zt−1 (xt−1 − x̄−1)
(7)

with σ̂2
u = T−1

∑T
t=1 û

2
t .
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The Full Sample IVX Test of KMS II

I A variety of choices for the residuals ût is possible. KMS recommend
using the OLS residuals from estimating (1) and we will use these
also. One could also use residuals computed under the null; that is,
ût := yt − 1

T

∑T
s=1 ys, or IV residuals.

I One-sided tests based on tzx can be formed by rejecting against the
right-sided alternative that βt = β > 0, for all t = 1, ..., T , for large
positive values of the statistics and against the left-sided alternative
that βt = β < 0, for all t = 1, ..., T , for large negative values of the
statistics. The latter can be equivalently implemented as right-sided
tests simply by replacing the predictor xt−1 by −xt−1. Two-sided
tests can be formed by rejecting against the alternative that
βt = β 6= 0, for all t = 1, ..., T , for large positive values of (tzx)2.
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The Full Sample IVX Test of KMS III

I KMS implement a �nite sample correction factor to correct for the
�nite sample e�ects of estimating the intercept term in (1). Details
can be found in KMS. We also implement this correction factor.

I In the case where conditional and/or unconditional heterskedasticity
is allowed for under Assumption 3 the conventional standard error,
s.e.(β̂zx), in (5) must be replaced by the corresponding Eicker-White
standard error, and we denote the resulting statistic as tEWzx .

I We establish that tEWzx statistic has a standard normal limiting null
distribution even under unconditional and/or conditional
heteroskedasticity of the form speci�ed in Assumption 3, regardless
of whether xt is strongly or weakly persistent. KMS have previously
shown that this result holds under unconditional homoskedasticity
and for the form of conditional heteroskedasticity they assume
discussed above. Local limiting power functions also established.
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Subsample Implementation of the KMS Test I

I If it were known that a pocket of predictability might occur only over
the particular subsample t = bτ1T c+ 1, . . . , bτ2T c, such that
b(t/T ) = b for t = bτ1T c+ 1, . . . , bτ2T c but was zero elsewhere,
then it would be more logical to base a test for this on the IVX
statistic computed only on the subsample t = bτ1T c+ 1, . . . , bτ2T c.
With an obvious notation denote this statistic as tzx(τ1, τ2), and the
corresponding subsample analogue of the full sample Eicker-White
tEWzx statistic denoted tEWzx (τ1, τ2).

I In practice it is unlikely to be known which speci�c subsample(s) of
the data might admit predictive regimes. We therefore base tests on
forward and reverse recursive sequences and rolling sequences.
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Subsample Implementation of the KMS Test II

I Tests based on the forward recursive sequence of statistics are
designed to detect pockets of predictability which begin at or near
the start of the full sample period, while those based on the reverse
recursive sequence are designed to detect end-of-sample pockets of
predictability. For a given window width, tests based on a rolling
sequence of statistics are designed to pick up a window of
predictability, of (roughly) the same length, within the data.

I The subsample IVX tests we propose based on these sequences of
subsample statistics are then formally de�ned as follows. We will
outline these for the case of IVX statistics computed with
conventional standard errors, but these can also be implemented with
Eicker-White standard errors by replacing tzx(·, ·) with tEWzx (·, ·)
throughout.
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Subsample Implementation of the KMS Test III

• The sequence of forward recursive statistics is given by
{tzx(0, τ)}τL≤τ≤1, where the parameter τL ∈ (0, 1) is chosen by the user.
The forward recursive regression approach uses bTτLc start-up
observations, where τL is the warm-in fraction, and then calculates the
sequence of subsample predictive regression statistics tzx(0, τ) for
t = 1, ..., bτT c, with τ travelling across the interval [τL, 1]. An
upper-tailed test can then be based on the maximum taken across this
sequence, viz,

T FU := max
τL≤τ≤1

{tzx(0, τ)}. (8)

The corresponding left-tailed test can be based on the minimum across
this sequence, denoted T FL , and a two-tailed test can be based on the
corresponding maximum taken over the sequence of (tzx(0, τ))2 statistics,
denoted T F2 .
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Subsample Implementation of the KMS Test IV

• The sequence of backward recursive statistics is given by
{tzx(τ, 1)}0≤τ≤τU with τU ∈ (0, 1) again chosen by the user. Here one
calculates the sequence of subsample predictive regression statistics
tzx(τ, 1) for t = bτT c+ 1, ..., T , with τ travelling across the interval
[0, τU ]. Analogously to the forward recursive case, an upper-tailed test
can again be based on the maximum from this sequence,

T BU := max
0≤τ≤τU

{tzx(τ, 1)} (9)

while corresponding lower-tailed tests and two-sided tests can be formed
from the statistics T BL and T B2 , de�ned analogously to the forward
recursive case.
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Subsample Implementation of the KMS Test V

• The sequence of rolling statistics is given by
{tzx(τ, τ + ∆τ)}0≤τ≤1−∆τ where the user-de�ned parameter ∆τ ∈ (0, 1).
Here one calculates the sequence of subsample statistics tzx(τ, τ + ∆τ)
for t = bτT c+ 1, ..., bτT c+ bT∆τc, where ∆τ is the window fraction
with bT∆τc the window width, with τ travelling across the interval
[0, 1−∆τ ]. An upper-tailed test can again be based on the maximum
from this rolling sequence,

T RU := max
0≤τ≤1−∆τ

{tzx(τ, τ + ∆τ)} (10)

while corresponding lower-tailed tests and two-sided tests can again be
formed from the statistics T RL and T R2 , de�ned analogously to the
recursive cases.
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Subsample Implementation of the KMS Test VI

Demetrescu et al. (2021) also consider tests for episodic predictability
based on the maxima from corresponding sequences of rolling and
recursive subsample implementations of a 2SLS predictability statistic as
discussed by Breitung and Demetrescu (2015). As a necessary
consequence of over-identi�ed IV inference with strictly exogenous
instruments, the approach proposed in Demetrescu et al. (2021) can only
be used to test against two-sided alternatives, while as we have seen the
subsample IVX-based tests considered in this paper can be used to test
against either one-sided or two-sided alternatives. Where, as is often the
case, theory predicts the sign of the slope parameter on xt−1 under
predictability, being able to consider one-sided tests will clearly deliver
tests with greater power relative to two-sided testing.
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Subsample Implementation of the KMS Test VII

Limiting distribution theory is developed in the paper for the subsample
IVX tests under the same set of assumptions as for the full sample IVX
tests. The main take-aways from these limiting results are that the
limiting null distributions of the subsample tests de�ned above:

1. Do not depend on the magnitude of ρ under Assumption 1.1 or the
mean-reversion parameter c under Assumption 1.2 (in both cases
asymptotic local power does though).

2. Depend in general on any heteroskedasticity present, despite being
based on White standard errors. They also depend on any serial
correlation present in (ut, vt)

′ in the weakly persistent case.

3. Have di�erent functional forms depending on whether xt is
near-integrated or stable.

The last two features pose signi�cant problems for conducting inference
that are not encountered with tests based on the full sample IVX test.
However, these issues can all be solved by using bootstrap methods.
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Bootstrap IVX Tests I

I We will explore two bootstrap resampling schemes. The �rst, a
residual wild bootstrap [RWB]. The second is the �xed regressor wild
bootstrap [FRWB] employed for 2SLS IV tests by Demetrescu et al.

(2021). We show that both of these are �rst-order asymptotically
valid.

I The approaches can be applied to any of the full sample and
subsample-based IVX statistics discussed above. They can be
implemented with either regular standard errors or White standard
errors (the wild bootstrap obviates the need for White ses when
heteroskedasticity is present).
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A Residual Wild Bootstrap

1. Fit the predictive regression to the sample data (yt, xt−1)′ to obtain
the residuals ût, t = 1, ..., T .

2. Fit by OLS an autoregression of order p+ 1 to xt; viz,

xt = m̂+

p+1∑
j=1

âjxt−j + v̂t

and compute the OLS residuals v̂t, t = p+ 1, . . . , T . Set v̂t = 0 for
t = 1, . . . , p.

3. Generate bootstrap innovations (u∗t , v
∗
t )
′ := (Rtût, Rtv̂t)

′,
t = 1 . . . , T , where Rt, t = 1, ..., T , is a scalar i.i.d.(0, 1) sequence
with E(R4

t ) <∞, which is independent of the sample data.
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4 De�ne the bootstrap data (y∗t , x
∗
t−1)′ where y∗t = u∗t (so that the

null hypothesis is imposed on the bootstrap y∗t ) and where x∗t is
generated according to the recursion

x∗t =

p+1∑
j=1

âjx
∗
t−j + v∗t , t = 1, ..., T

with initial conditions x∗0 = . . . = x∗−p = 0. Create the associated
bootstrap IVX instrument, z∗t , as:

z∗0 = 0 and z∗t =

t−1∑
j=0

%j∆x∗t−j , t = 1, . . . , T,

where % is the same value as used in constructing the original IVX
instrument, zt.

5 Using the bootstrap sample data,
(
y∗t , x

∗
t−1, z

∗
t−1

)′
, in place of the

original sample data, (yt, xt−1, zt−1)′, construct the bootstrap
analogues of the IVX statistics.
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A Fixed-Regressor Wild Bootstrap

1. Construct the wild bootstrap innovations y∗t := ŷtRt, where
ŷt := yt − 1

T

∑T
t=1 yt are the demeaned sample observations on yt.

2. Using the bootstrap sample data
(
y∗t , xt−1, z

′
t−1

)′
, in place of the

original sample data
(
yt, xt−1, z

′
t−1

)′
, construct the bootstrap

analogues of the IVX statistics.
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Bootstrap IVX Tests II

I A key di�erence between the RWB and FRWB surrounds the
generation of the bootstrap analogue data for xt and zt. While the
RWB rebuilds into the bootstrap data (an estimate of) the
correlation between the innovations ut and vt (it is crucial in doing
so that the same Rt is used to multiply both ût and v̂t), the FRWB
does not. This is an important distinction because the �nite sample
behaviour of the IVX statistics is heavily dependent on the
correlation between ut and vt when xt is strongly persistent.

I A further di�erence is that because the RWB uses the bootstrap data
x∗t and z

∗
t , one is implicitly using an estimate of ρ. Under strong

persistence c, cannot be consistently estimated and so x∗t will not be
generated with the same local-to-unity parameter as xt. However,
the IVX statistics instrument xt−1 by zt−1, and their bootstrap
analogues instrument x∗t−1 by z∗t−1. But both zt and z

∗
t are, by

construction, mildly integrated processes, regardless of the value of c.
There is therefore no necessity for the estimate of c to be consistent.
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Bootstrap IVX Tests III

I In practice the autoregressive lag truncation order used in the second
step of the RWB will be unknown. This can be selected in the usual
way using a consistent information criterion such as the Bayes
Information Criterion (BIC) or Hannan-Quinn [HQ] information
criterion. A less parsimonious information criterion, such as the
Akaike Information Criterion [AIC] could also be used, or even a
deterministic truncation lag chosen according to, for example, the
popular Schwert (1989) rule where the lag truncation is set equal to
bκ(T/100)1/4c, for some positive constant κ.

I The lag length �tted in the second step of the RWB turns out to
have rather little bearing on the power of the resulting bootstrap
tests. No choice of p is required in connection with the FRWB.

IVX Predictability Tests 43 of 73



Bootstrap IVX Tests IV

I We show that both bootstraps correctly replicate the �rst order
asymptotic null distributions of the IVX statistics under both the null
hypothesis and local alternatives. However, in the case where xt is
weakly persistent, for the RWB-based tests this result requires a
further restriction to hold on the fourth moments of the innovations.
This additional restriction is not required for the asymptotic validity
of the FRWB tests.

I Speci�cally, we require that fourth moments of the form
E[(ψ1ψ

′
1)⊗ (ψ−iψ

′
−j)] are zero for all natural i 6= j. Although this

condition is not tied to any speci�c parameteric model, a well known
class of models which violate this condition are GARCH models with
non-zero leverage e�ects.

I The RWB does not replicate the contribution of these moment terms
to the quadratic variation of a key limiting process in the weakly
dependent case. The FRWB implicitly replicates these terms.
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Bootstrap IVX Tests V

I Although the RWB and FRWB are asymptotically equivalent, to
�rst-order, to each other and to the limiting null distributions of the
corresponding asymptotic statistics, they di�er in higher-order terms.
In particular, in the strongly persistent case the second-order term in
a Taylor expansion of the full-sample IVX statistic is a function of c.
In preliminary work we have found that the FRWB entirely fails to
replicate this second-order term, while the RWB, conditional on the
data, replicates a similar functional to the second-order term but
with ĉ (the implied estimate of c obtained from Step 2 of the RWB
algorithm replacing the true c.

I So although the RWB does not correctly replicate the second-order
term from the limiting null distribution of the IVX statistic it
replicates part of it and this would be anticipated to e�ect a reduced
sensitivity to c in the �nite sample size properties of the RWB test
relative to the FRWB test, a prediction borne out by our simulations
results, which follow next ...
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Monte Carlo Results I

Case 1: Empirical Size: Scalar Predictor, IID errors

I DGP (1)-(2) with βt = 0 for all t. Set α = µx = 0 w.n.l.o.g.

I ρ := 1− c/T with c ∈ {−0.5,−0.25, 0, 2.5, 5, 10, 25, ..., 250}
I (ut, vt)

′ is zero-mean IID bivariate Gaussian with covariance matrix

Σ :=

[
1 φ
φ 1

]
and φ = −0.95

I IVX with a = 1, γ = 0.95, and KMS's �nite-sample correction

I Report: t∗,RWB
zx and t∗,FRWB

zx (RWB and FRWB implementations of
tzx); t

EW
zx (asymptotic IVX test with conventional ses) and tzx

(asymptotic IVX test with White ses)

I T = 250, 10000 MC replications, 999 bootstrap replications.
Nominal 5% level. In Step 2 of RWB p chosen by BIC over the
search set p ∈ {0, ..., b4(T/100)0.25c}.
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Table 1: Size of Left-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.046 0.004 0.004 0.003

-2.5 0.045 0.000 0.000 0.001
0 0.041 0.001 0.001 0.001

2.5 0.062 0.005 0.005 0.005
5 0.068 0.010 0.011 0.010
10 0.064 0.019 0.019 0.018
25 0.057 0.029 0.030 0.028
50 0.056 0.034 0.036 0.035
75 0.056 0.037 0.038 0.037
100 0.054 0.038 0.040 0.038
125 0.054 0.039 0.042 0.041
150 0.055 0.043 0.046 0.042
200 0.054 0.046 0.048 0.045
250 0.054 0.048 0.051 0.048
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Table 2: Size of Right-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.046 0.074 0.080 0.073

-2.5 0.041 0.094 0.097 0.093
0 0.053 0.105 0.114 0.110

2.5 0.064 0.112 0.116 0.115
5 0.062 0.107 0.116 0.112
10 0.062 0.097 0.102 0.099
25 0.057 0.078 0.084 0.080
50 0.052 0.067 0.072 0.067
75 0.053 0.064 0.068 0.065
100 0.053 0.061 0.065 0.062
125 0.052 0.060 0.063 0.060
150 0.053 0.056 0.060 0.059
200 0.050 0.054 0.056 0.053
250 0.051 0.051 0.055 0.053
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Table 3: Size of Two-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.048 0.038 0.044 0.039

-2.5 0.038 0.040 0.048 0.044
0 0.047 0.051 0.057 0.053

2.5 0.053 0.058 0.062 0.060
5 0.054 0.058 0.063 0.060
10 0.055 0.060 0.066 0.060
25 0.056 0.056 0.060 0.058
50 0.051 0.051 0.054 0.052
75 0.049 0.047 0.052 0.049
100 0.049 0.048 0.052 0.050
125 0.050 0.049 0.053 0.051
150 0.051 0.049 0.054 0.052
200 0.050 0.048 0.054 0.050
250 0.049 0.048 0.053 0.050
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Monte Carlo Results II

Case 2: Empirical Size: Scalar Predictor, ARCH with leverage

I Next a case which violates the regularity conditions for validity of the
RWB when xt is weakly persistent, where the conditional variance of
(ut, vt)

′ follows a stationary ARCH model with leverage e�ects:(
yt
xt

)
=

(
0

ρxt−1

)
+

(
ut
vt

)
=

(
0

ρxt−1

)
+

(
1 0
1 1

)
ψt

ψt =

(
at
et

)
=

(
ε1t

√
1 + 1

2a
2
t−1I{at−1<0}

ε2t

)
and (ε1t, ε2t)

′ ∼ NIID(0, I2).

I The AR parameter ρ is again set equal to 1− c/T with
c ∈ {5, 10, 25, ..., 250}

I All computational aspects as for Case 1.
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Table 4: Size of left-sided Tests.

ARCH innovations with leverage.

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
5 0.062 0.099 0.106 0.107
10 0.059 0.088 0.096 0.099
25 0.059 0.076 0.081 0.092
50 0.058 0.067 0.074 0.089
75 0.060 0.062 0.069 0.090
100 0.060 0.061 0.067 0.089
125 0.059 0.060 0.066 0.088
150 0.059 0.058 0.063 0.085
200 0.057 0.056 0.060 0.082
250 0.053 0.053 0.057 0.078
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Table 5: Size of right-sided Tests.

ARCH innovations with leverage.

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
5 0.058 0.014 0.015 0.015
10 0.059 0.021 0.022 0.024
25 0.061 0.030 0.030 0.039
50 0.062 0.037 0.038 0.053
75 0.061 0.039 0.041 0.061
100 0.059 0.037 0.040 0.065
125 0.057 0.039 0.041 0.067
150 0.059 0.040 0.042 0.071
200 0.056 0.041 0.045 0.072
250 0.054 0.043 0.047 0.075
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Table 6: Size of two-sided Tests.

ARCH innovations with leverage.

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
5 0.053 0.055 0.065 0.063
10 0.051 0.053 0.060 0.062
25 0.056 0.052 0.057 0.069
50 0.059 0.050 0.056 0.081
75 0.061 0.051 0.057 0.090
100 0.063 0.053 0.058 0.095
125 0.062 0.051 0.059 0.098
150 0.060 0.051 0.057 0.097
200 0.058 0.050 0.056 0.096
250 0.053 0.051 0.054 0.092
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Monte Carlo Results III

Case 3: Empirical Size: Multiple Predictors

I The multiple predictor simulation DGP we use is as in Xu and Guo
(2020):

yt = α+ x′t−1β + ut, t = 1, . . . , T,

xt = ρxt−1 + vt, t = 0, . . . , T,

where xt := (x1,t, ..., xK,t)
′ is a K × 1 vector of predictor variables,

β is a K × 1 vector of parameters, α = 0.25, ρ is a K ×K diagonal
matrix with common diagonal element ρ, i.e., ρ := diag(ρ, ..., ρ).

I The AR parameter ρ is again set equal to 1− c/T with
c ∈ {−5,−2.5, 0, 2.5, 5, 10, 25, ..., 250}
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I The innovations are generated as (ut,v
′
t)
′ ∼ NIID(0,Σ) where

Σ =


σ2
u σu,v1 0 · · · 0

σu,v1 σ2
v1 0 · · · 0

0 0 σ2
v2 · · · 0

...
...

...
. . .

...
0 0 0 · · · σ2

vK

 (11)

with σ2
u = 0.037, σu,v1 = −0.035, σ2

v1 = ... = σ2
vK

= 0.045.

I Notice, therefore, that the �rst predictor, x1,t is endogenous (with an
endogeneity correlation parameter φ1 = −0.83), while the remaining
predictors x2,t, ..., xK,t are exogenous.

I We report the empirical sizes of the Wald tests for the joint
signi�cance of the K predictors. NB RWB uses obvious VAR
generalisation of Step 2.
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Table 7: Size of joint Wald Tests.

K = 3 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.085 0.352 0.385 0.366
-2.5 0.097 0.176 0.193 0.177

0 0.075 0.105 0.117 0.104
2.5 0.067 0.086 0.103 0.090
5 0.059 0.077 0.095 0.083
10 0.054 0.066 0.083 0.071
25 0.052 0.061 0.075 0.066
50 0.053 0.057 0.070 0.061
75 0.053 0.053 0.069 0.058
100 0.051 0.053 0.069 0.057
125 0.052 0.054 0.070 0.058
150 0.052 0.054 0.069 0.058
200 0.052 0.055 0.071 0.059
250 0.053 0.055 0.071 0.060
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Table 8: Size of joint Wald Tests.

K = 5 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.074 0.402 0.466 0.421
-2.5 0.091 0.239 0.281 0.241

0 0.082 0.157 0.186 0.156
2.5 0.069 0.120 0.156 0.129
5 0.063 0.105 0.138 0.116
10 0.062 0.086 0.120 0.098
25 0.053 0.067 0.100 0.080
50 0.052 0.059 0.089 0.069
75 0.051 0.055 0.085 0.063
100 0.049 0.053 0.082 0.062
125 0.049 0.053 0.080 0.062
150 0.046 0.052 0.078 0.061
200 0.047 0.051 0.079 0.060
250 0.044 0.049 0.077 0.058
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Table 9: Size of joint Wald Tests.

K = 10 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.058 0.513 0.635 0.559
-2.5 0.072 0.398 0.505 0.425

0 0.087 0.306 0.406 0.324
2.5 0.075 0.238 0.342 0.262
5 0.067 0.191 0.301 0.225
10 0.060 0.141 0.244 0.175
25 0.050 0.089 0.174 0.118
50 0.048 0.067 0.142 0.091
75 0.046 0.060 0.129 0.081
100 0.046 0.056 0.120 0.077
125 0.043 0.053 0.117 0.074
150 0.042 0.052 0.116 0.071
200 0.039 0.049 0.116 0.070
250 0.036 0.050 0.116 0.072
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Monte Carlo Results IV

Case 4: Empirical Power: Scalar Predictor, IID errors

I DGP (1)-(2) with β = b/T , with the following values considered for
the Pitman drift parameter, b ∈ {−20,−19, ..., 19, 20}.

I All other aspects as for Case 1.

I Results reported for four values of the persistence parameter, c,
associated with xt; speci�cally, c = {−5, 0, 10, 20}.

I All computational aspects as for Case 1.
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Figure 1: Empirical Power of two-sided tests, c = −5, 0, 10, 25
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Testing for Bubbles in Foreign Exchange Rates: I

I We re-visit testing for speculative bubbles in the U.K. ¿ to
U.S. $ foreign exchange market considered in Pavlidis et al. (2017).
Monthly data on spot and forward rates, January 1999 to July 2021
(T = 271), start date coinciding with the introduction of the Euro.

I Fama (1984) proposes the following regression as a basis for testing
for e�ciency in foreign exchange markets,

st+h − ft,h = αh + βh(ft,h − st) + ut+h, (12)

where st+h − ft,h is typically referred to as the excess return (or
forecast error) and ft,h − st is the forward premium, where st is (the
log of) the spot exchange rate at time t and ft,h is (the log of) the
forward rate at time t for maturity at time t+ h, h ≥ 1.

I In the context of (12), as discussed in Pavlidis et al. (2017), the
e�cient market hypothesis corresponds to βh = 0, while if an
exchange rate bubble is present in any time period then βh > 0.
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Testing for Bubbles in Foreign Exchange Rates: II

I Pavlidis et al. (2017) apply right-tailed rolling subsample
implementations of the IVX tests of Kostakis et al. (2015) to test
the null βh = 0 against the alternative that βh in (12) is positive in
at least one subsample of the data. Here it is important to use only
right-tailed tests because, as is well known in this literature, the
estimate of βh can su�er from a severe negative �nite sample bias
when βh = 0; the so-called forward bias puzzle. A number of
explanations have been posited for this phenomenon including the
negative correlation between the risk premium and the forward
premium. Consequently, a two-sided test might be inappropriate as a
rejection could be due to either a downward bias e�ecting large
negative statistics in some subsamples, or a genuine bubble episode.
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Testing for Bubbles in Foreign Exchange Rates: III

I Like Pavlidis et al. (2017) we report results for the three periods to
maturity available in the dataset, namely, one, three, and six months:
h = {1, 3, 6}. Where h > 1 we follow Pavlidis et al. (2017) and
estimate the parameters of (12) using the reverse regression method
of Phillips and Lee (2013).

I Fitting an autoregressive model (with a constant), we found the
forward premium, (ft,h − st), to be a strongly persistent time series
regardless of the maturity period; in particular the dominant
autoregressive root was estimated to be ρ̂ = 0.9635 for h = 1,
ρ̂ = 0.9821 for h = 3, and ρ̂ = 0.9880 for h = 6. The estimated
correlation parameter, φ̂, was found to be relatively small and
negative for h = 1, but increases in absolute value as h increases:
φ̂ = −0.0861 for h = 1, φ̂ = −0.3100 for h = 3, and φ̂ = −0.3686
for h = 6.
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Testing for Bubbles in Foreign Exchange Rates: IV

I Table 10 reports bootstrap (both RWB and FRWB) p-values for the
maximum rolling, and forward and backward recursive subsample IVX
statistics discussed earlier, in each case implemented as upper-tailed
(right-sided) tests, using B = 9999 bootstrap replications.

I Results are reported for four values of the tuning parameters ∆τ (the
window fraction used for the sequence of rolling statistics) and τL
and (1− τU ) (the warm-in parameters for the forward and backward
recursive sequences, respectively), namely 1/6, 1/4, 1/3, and 1/2.
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Testing for Bubbles in Foreign Exchange Rates: V

Table 10: Testing for bubbles in exchange rates between 1999 and 2021. P-values for

the rolling, and forward and backward recursive statistics.

∆τ, τL, (1− τU ) T R,RWB
U T R,FRWB

U T F,RWB
U T F,FRWB

U T B,RWB
U T B,FRWB

U

h = 1
1/6 0.1770 0.4929 0.8851 0.5917 0.8817 0.6292

1/4 0.2321 0.6094 0.8085 0.4214 0.8124 0.6035

1/3 0.2913 0.6451 0.7530 0.4059 0.7837 0.5769

1/2 0.1547 0.3251 0.4454 0.3517 0.6795 0.5592

h = 3
1/6 0.0498 0.0847 0.8152 0.8719 0.3858 0.3733

1/4 0.2443 0.3973 0.7681 0.7932 0.3512 0.3551

1/3 0.1126 0.2198 0.7364 0.7328 0.3275 0.3348

1/2 0.0588 0.0347 0.5129 0.6676 0.2866 0.3230

h = 6
1/6 0.0169 0.0078 0.8915 0.8628 0.2125 0.1745

1/4 0.0950 0.1390 0.8484 0.7848 0.1799 0.1497

1/3 0.0347 0.0587 0.8129 0.7575 0.1752 0.1427

1/2 0.0121 0.0010 0.6205 0.6768 0.1631 0.1419

Notes: The columns headed T R,k
U

, k = RWB,FRWB, provide p-values for the residual
(RWB) and �xed regressor (FRWB) wild bootstrap based rolling (R) upper tail tests. The

columns T F,k
U

, and T B,k
U

, k = RWB,FRWB, correspond to forward (F ) and backward (B)
recursive residual (RWB) and �xed regressor (FRWB) wild bootstrap based upper tail tests,
respectively. Test outcomes signi�cant at the 10% (5%) level are highlighted in bold (bold italic).

Empirical Illustration 67 of 73



Testing for Bubbles in Foreign Exchange Rates: VI

I For h = 1 none of the subsample IVX tests provide evidence, at any
conventional signi�cance level, of exuberant behaviour in the foreign
exchange rate.

I For the longer maturities considered, h = 3 and h = 6, statistically
signi�cant results are found in the case of the rolling tests,
suggesting the presence of a potential bubble. For both ∆τ = 1/6
and 1/2 the rolling tests signal the presence of exuberant behaviour
in the foreign exchange rate, although not for ∆τ = {1/4, 1/3}.

I The strongest rejections are for h = 6. Here the RWB rolling tests
�nd evidence of exuberant behaviour for all four window widths. The
FRWB based rolling tests reject the null for all window widths,
except ∆τ = 1/4. The forward and backward recursive tests do not
reject the null for any of the warm-in parameters and maturities
considered, suggesting that the start and end points of the bubble
episode are bounded away from the end points of the full sample.
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Testing for Bubbles in Foreign Exchange Rates: VII

I Pavlidis et al. (2017) �nd no evidence of speculative bubbles for any
of these maturity periods for data from January 1979 to December
2013. Although our sample period is di�erent, it is instructive to
investigate where in the sample the rejections we �nd occur.

I Figure 2 plots the sequence of rolling IVX statistics for ∆τ = 1/2
and h = 6. Also plotted are the 5% and 10% RWB critical values for
the maximum of the rolling test statistics and the upper-tail 5% and
10% pointwise RWB critical values.
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Testing for Bubbles in Foreign Exchange Rates: VIII

Figure 2: Plot of the sequence of upper-tailed rolling statistics for testing the

null hypothesis of no bubble in the U.K. pound - U.S. dollar foreign exchange

market for a six month maturity (h = 6).
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Testing for Bubbles in Foreign Exchange Rates: IX

I Figure 2 indicates that the rejection of the null by the maximum of
the rolling tests occurs between January 2016 and November 2016
(after the end of the sample period considered in Pavlidis et al.,
2017) for a 10% signi�cance level and between February 2016 and
September 2016 for a 5% signi�cance level.

I The sequence of rolling statistics displays a steady and sustained
increase in magnitude from mid-2013 onwards, exceeding the
pointwise 10% (5%) signi�cance level between June 2015 and May
2019 (September 2015 and August 2018). These �ndings are
consistent with a bubble episode in the U.K. pound - U.S. dollar
exchange rate which collapsed at or around the time of the Brexit
vote in summer 2016.
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Summing up

I Inference in predictive regressions with regressors of uncertain
persistence is highly challenging!

I IVX tests of KMS are very popular but make overly restrictive
assumptions on the innovations (notably that the predictive
regression error follows a GARCH process) and can have poor �nite
sample size control when the predictor is strongly persistent and
endogenous.

I We show that the IVX tests with White standard errors are valid
under much weaker conditions (no need to assume a GARCH model
for the errors).

I Bootstrap implementations are shown to considerably improve �nite
sample properties.

I Subsample IVX tests developed with bootstrap implementation.

I FX bubbles? Maybe!
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