
Detecting Regimes of Predictability in the U.S. Equity
Premium

Robert Taylor

University of Essex

Co-authors:

David Harvey (University of Nottingham)

Stephen Leybourne (University of Nottingham)

Robert Sollis (Newcastle University)

This research is funded by the ESRC under award number ES/R00496X/1.

March 2019

Robert Taylor, Essex Detecting Regimes of Predictability March 2019 1 / 104



Introduction

Predictive regressions play an important role in empirical economics.
In financial economics it is of interest whether current information on
variables such as dividend yields or interest spreads contain
information about future (excess) stock price returns (e.g. Campbell
and Shiller, 1988, JF).

An important practical problem with performing such predictive
regressions with financial applications is that in many cases the
regressor is highly persistent, whereas the dependent variable is close
to white noise. For example, stock price returns or exchange rate
changes appear to be approximately white noise, whereas predictors
like dividend yields or interest rate differentials exhibit persistence
behaviour akin to that of a unit root or near unit root autoregressive
process.

As shown by Elliott and Stock (1994,ET), the conventional t-statistic
in the predictive regression can suffer from severe size distortions in
such cases.
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Introduction

Consider testing H0 : β = 0 (i.e. yt unpredictable by xt−1) in the
predictive regression

yt = α + βxt−1 + εt, t = 1, ..., T

where yt is local-to-white noise (e.g. returns) and xt is local-to-unit
root (e.g. dividend yield).

A number of papers have focused on developing asymptotically valid
tests of this hypothesis, allowing for an unknown local-to-unity
parameter in xt and unknown correlation between εt and the
innovations to the xt process, e.g.:

Cavanagh et al. (1995,ET) (Bonferroni bounds that yield conservative
tests)

Campbell and Yogo (2006,JFE) (point optimal t-test)

Breitung and Demetrescu (2015,JoE) (variable addition and IV)

Kostakis, Magdalinos and Stamatogiannis (2015,Review of Financial
Studies) (IVX).
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Introduction

These methods are designed to test the null of predictability against
the alternative that xt−1 is predictive for yt over the whole sample.

However, if stock returns are predictable, then it seems likely it would
be a time-varying phenomenon; eg, significant changes in monetary
policy and financial regulations could lead to shifts in the relationship
between macroeconomic variables and the fundamental value of
stocks, via the impact of these changes on economic growth and the
growth rates of earnings and dividends.

A growing body of empirical evidence is supportive of this view. Eg,
Henkel et al. (2011) find that return predictability in the stock
market appears to be closely linked to economic recessions with
dividend yield and term structure variables displaying predictive power
only during recessions.
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Introduction

Timmermann (2008) argues stock returns are not predictable for most
time points but that there are ‘pockets in time’ where evidence of
local predictability is seen.

If a variable begins to have predictive power for stock returns then a
short window of predictability might exist before investors learn about
the new relationship between that variable and returns, but it will
eventually disappear; see, in particular, Paye and Timmermann (2006)
and Timmermann (2008).

It therefore seems reasonable to consider the possibility that the
predictive relationship might change over time, so that over a long
span of data one may observe some, possibly relatively short, windows
of time during which predictability occurs. In such cases, standard
predictability tests based on the full sample of available data will have
low power to detect these short-lived predictive episodes.
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Introduction

Lettau and Ludvigsson (2001) find evidence of instability in the
predictive ability of the dividend and earnings yield in the second half
of the 1990s.

Goyal and Welch (2003) and Ang and Bekaert (2007) find instability
in prediction models for U.S. stock returns based on the dividend
yield in the 1990s.

Paye and Timmermann (2006) undertake a comprehensive analysis of
prediction model instability for international stock market indices
using Bai-Perron structural break tests. They find statistically
significant evidence of structural breaks for many of the countries
considered, arguing that the “Empirical evidence of predictability is
not uniform over time and is concentrated in certain periods.” op.cit.
p.312. They find some evidence of a common break for the U.S. and
U.K. in 1974-1975, and for European stock markets linked to the
introduction of the European Monetary System in 1979.
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Introduction

However, the statistical methods used by these authors are based on
methods not designed for use with highly persistent, endogenous
predictors.

Moreover, traditional regression t-tests for predictability and
structural break tests are an ex post tool for detecting the statistical
significance of regressors and structural breaks in a historical sample
of data. They are less useful in monitoring for change in real-time
because their repeated application in prediction models can lead to
size distortions (with the probability of at least one of the tests
rejecting tending to unity as the number of tests in the sequence
increases) and, as a consequence, spurious evidence of in-sample
predictive ability; see Inoue and Rossi (2005) for a detailed discussion
of this problem in relation to t-tests.
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Introduction

In this paper we develop new methods to investigate the stability of
predictive regression models for the U.S. equity premium. As putative
predictors we consider various commonly used traditional
macroeconomic and financial variables, and a range of technical
analysis rules where only price or volume data is used to predict
returns.

The methods we develop are designed to detect relatively short
windows of predictability arising from shifts in the parameter on the
predictor variable in the predictive regression. Our detection
procedures are based around the sequential application of simple
heteroskedasticity-robust regression t-statistics for the significance of
the predictor variable calculated over a subsample of fixed length m.
These statistics are then compared to critical values obtained using
the subsampling-like method of Andrews (2003) and Andrews and
Kim (2006).
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Introduction

To take the end-of-sample case to illustrate, suppose we have a
sample of size T∗ + m and we form a predictability test statistic based
on the last m observations.

To obtain a critical value, one uses the training period t = 1, ..., T∗, to
compute the T∗ −m + 1 test statistics that are analogous to this
statistic but calculated over the m observations that start at the jth
observation (rather than the (T∗ + 1)th observation, as for our
end-of-sample statistic) for j = 1, ..., T∗ −m + 1.

The (1− α) sample quantile of these statistics is the estimated
significance level-α critical value for the end-of-sample predictability
test. Computation of the critical value is relatively easy and p-values
can also be readily obtained using this method.

This methodology has distinct advantages when compared with the
application of traditional regression-based tests for predictability and
structural change. In particular, it is robust to the degree of
persistence and endogeneity of the predictor.
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Introduction

We use t-statistics constructed using heteroskedasticity-robust
standard errors and, hence, our approach is also robust to certain
forms of heteroskedasticity in the model errors.

Our proposed approach is based on the sequential application of these
one-shot subsample tests, commencing from a given start date, with a
predictability regime being deemed to have occurred if a certain
number of consecutive rejections (at a given marginal significance
level) by these tests is observed.

Where this occurs the run of rejections can be used to form estimates
of the locations of the predictive regimes. When applied using
end-of-sample forms of the subsample predictability tests this delivers
a real-time monitoring procedure for the emergence of a regime of
predictive ability of a regressor for stock returns data.
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Introduction

Because our detection procedure is based on a sequence of subsample
tests, we need to avoid the issue of spurious detections outlined in
Inoue and Rossi (2005) by controlling the false positive detection rate
for the detection procedure.

We develop implementation rules, based on the number of
consecutive rejections that need to be observed before a predictive
regime is signalled by the procedure, pre-set by the practitioner at the
start of the monitoring period, which control the overall false positive
detection rate of the monitoring procedure.
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The Predictive Regression Model

We assume a relationship between the equity premium, yt, and a
single predictor variable xt described by the DGP

yt = µy +
n

∑
j=1

βjdt(ej, mj)xt−1 + εy,t, t = 1, ..., T. (1)

The (putative) predictor is generated by

xt = µx + sx,t, t = 0, ..., T (2)

sx,t = ρsx,t−1 + εx,t, t = 1, ..., T (3)

with sx,0 an Op(1) random variable and where dt(ej, mj) is a dummy
variable defined such that dt(ej, mj) takes the value 1 for mj > 0
consecutive values of t, ending with t = ej.
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The Predictive Regression Model

The innovation vector εt := [εy,t, εx,t]′ is assumed to be an MDS with
finite fourth order moments and unconditional covariance matrix
given by

E(εtε
′
t) =

[
σ2

y,t rxyσy,tσx,t

rxyσy,tσx,t σ2
x,t

]
where

∣∣rxy
∣∣ < 1.

This allows unconditional heteroskedasticity in εy,t and/or εx,t while
keeping the unconditional correlation between εy,t and εx,t constant at
rxy.

Conditional heteroskedasticity, such as GARCH or stationary
autoregressive stochastic volatility, is permitted in both εy,t and εx,t.
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The Predictive Regression Model

As regards the AR(1) process in (3), the predictive regime detection
procedures we propose in this paper are valid regardless of whether
ρ = 1 (a unit root predictor) or |ρ| < 1 (a stationary predictor).
Moreover, ρ is also allowed to be T-dependent such as occurs, for
example, in cases where the predictor is strongly persistent displaying
either local or moderate deviations from a unit root; for full sample
predictability tests directed at the latter, see Kostakis et al. (2015).

The AR(1) specification is not in fact critical for our analysis, and it
could be generalized to a higher order autoregressive process without
affecting the validity of our proposed procedures; indeed, more
generally, εt could validly be allowed to follow a stable linear process,
albeit it is standard in the predictive regression literature to assume
that εyt is serially uncorrelated.
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The Predictive Regression Model

If βj 6= 0 in (1), then so we have a predictive regime of yt by xt−1 of
length mj observations running from t = ej −mj + 1 through to
t = ej. (1) allows for n ≥ 0 such predictive regimes.

We have in mind scenarios where such regimes are relatively scarce
and short-lived so that both the number of predictive regimes, n, and
their durations, mj, j = 1, ..., n, are taken to be small relative to the
sample size, T.

We assume ej < ej+1 −mj+1 such that the regimes where
predictability holds are ordered (i.e. dt(e1, m1) is the earliest regime)
and non-overlapping. Our detection procedure will consider the
quantities ej and mj which delimit the start and end dates of the
predictive regimes, and the number of regimes, n, to be unknown.

Outside of these n predictive regimes the slope parameter in (1) is
zero and the DGP is such that yt = µy + εy,t and, hence, yt is

unpredictable (in mean) due to the MDS property assumed for εy,t.
Where n = 0 in (1), yt is therefore unpredictable at all time periods.
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Background Results for Predictive Regime Detection

To motivate, suppose we have a sample of time series observations zt,
t = 1, ..., N from a stationary continuous distribution. Consider
maxt∈[1,N] zt; its value is clearly a function of the distribution of zt.

But, consider the location at which maxt∈[1,N] zt occurs, M :=
arg maxt∈[1,N] zt. As all possible locations are equally likely,
Pr(M = 1) = Pr(M = 2) = · · · = Pr(M = N) = 1/N, irrespective
of the distribution of zt. Hence, M has a discrete uniform
distribution. If we standardize M as pM := M/N, then, for large N,
we find that pM ∼ U(0, 1), where U(0, 1) is the continuous uniform
distribution on the interval [0, 1]. Hence,

lim
N→∞

Pr(pM ∈ [0, 1− α]) = 1− α

lim
N→∞

Pr(pM ∈ [1− α, 1]) = α.
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Background Results for Predictive Regime Detection

Consider the maximum value of zt in each of the two intervals
t = 1, ..., b(1− α)Nc and t = b(1− α)Nc+ 1, ..., N; ie,
maxt∈[1,b(1−α)Nc] zt and maxt∈[b(1−α)N+1,Nc] zt, respectively, noting
that only one of these can coincide with maxt∈[1,N] zt.
Then,

lim
N→∞

Pr
(

max
t∈[b(1−α)Nc+1,N]

zt > max
t∈[1,b(1−α)Nc]

zt

)
= α (4)

due to the large sample uniformity of the location of the maximum.
Hence the probability that maxt∈[1,N] zt is located in the latter
interval t ∈ [b(1− α)Nc+ 1, N], i.e. that
maxt∈[b(1−α)Nc+1,N] zt > maxt∈[1,b(1−α)Nc] zt, is the limit ratio of the
length of the latter interval (N− b(1− α)Nc) to the total length of
the two intervals together (b(1− α)Nc+ N− b(1− α)Nc = N); ie,

lim
N→∞

N− b(1− α)Nc
N

= α.
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Background Results for Predictive Regime Detection

Consider next the maximum number of contiguous values of zt that
exceed some threshold value, c say, where we assume that c is such
that 0 < Pr(zt > c) < 1.

Let Rt := 1(zt > c) and define the following measure over t = L to
t = U with U ≥ L:

R(L, U) := (U− L + 1)
U

∏
t=L

Rt. (5)

Notice that when R(L, U) is non-zero, its value, U− L + 1,
represents the length of a sequence of contiguous exceedances.

The maximum length of contiguous exceedances over t = 1, ..., N is
then maxL,U∈[1,N] R(L, U), which will depend on the distribution of zt.

Robert Taylor, Essex Detecting Regimes of Predictability March 2019 18 / 104



Background Results for Predictive Regime Detection

If, however, we consider the location of the maximum length of
contiguous exceedances, i.e. (ML, MU) := arg maxL,U∈[1,N] R(L, U),
this does not depend on the distribution of zt as all possible locations
for the pair (ML, MU) are equally likely. Paralleling the uniform
distribution arguments leading to (4), we find that

lim
N→∞

Pr

(
max

L,U∈[b(1−α)Nc+1,N]
R(L, U) > max

L,U∈[1,b(1−α)Nc]
R(L, U)

)
= α. (6)

Again, the intuition is that due to the large sample uniformity of the
location of the maximum length of exceedances, the probability that
maxL,U∈[1,N] R(L, U) is located in L, U ∈ [b(1− α)Nc+ 1, N], i.e.
that maxL,U∈[b(1−α)Nc+1,N] R(L, U) > maxL,U∈[1,b(1−α)Nc] R(L, U), is
the limit ratio of the length of the latter interval (N− b(1− α)Nc)
to the total length of the two intervals
(b(1− α)Nc+ N− b(1− α)Nc = N), which is α.
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Subsample Regression t-statistics

Consider selecting a subsample of m observations running from
t = e−m + 1 to t = e, m chosen by the practitioner, and run the
(generic) OLS regression,

yt = a + bxt−1 + ut, t = e−m + 1, ..., e. (7)

Calculate the heteroskedasticity-robust regression t-statistic for the
significance of xt−1 in (7),

τe,m :=
b̂√

V̂(b̂)
(8)

where

b̂ :=
∑e

t=e−m+1(xt−1 − x̄−1)(yt − ȳ)
∑e

t=e−m+1(xt−1 − x̄−1)2 , V̂(b̂) :=
∑e

t=e−m+1(xt−1 − x̄−1)
2û2

t
{∑e

t=e−m+1(xt−1 − x̄−1)2}2

ût := (yt − ȳ)− b̂(xt−1 − x̄−1)

ȳ := m−1
e

∑
t=e−m+1

yt, x̄−1 := m−1
e

∑
t=e−m+1

xt−1.
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Subsample Regression t-statistics

Given an appropriate critical value, a test for a predictive regime
holding between yt and xt−1 for the subsample t = e−m + 1, ..., e can
be based on τe,m. Eg, with data for t = 1, ..., T∗ + m a test for a
predictive regime in the last m sample observations would be based
on the statistic τT∗+m,m.

Standard regime detection tests, such as those outlined in Paye and
Timmermann (2006) use asymptotic distribution theory to
approximate the test’s critical value based on the assumption that m
is a fraction of the sample size, T. This assumption is clearly not
consistent with the aim to detect predictive regimes of short duration.

Even if we were to assume m to be a function of the sample size T,
the limiting distribution of τe,m will depend on nuisance parameters
present in the DGP; in particular, the degree of persistence of xt and
the correlation, rxy, between εy,t and εx,t. Without knowledge of these
nuisance parameters, valid asymptotic critical values for the test could
not be obtained in any case.
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Subsample Regression t-statistics

We will use an alternative approach based on the subsampling
method for obtaining critical values developed in Andrews (2003) and
Andrews and Kim (2006).

Here the asymptotic justification for the procedure is based on the
scenario where T → ∞ but crucially, and as in our setting, the sample
window, m, remains finite.

Applied to the τe,m statistic, this approach involves comparing τe,m
with critical values obtained by subsampling from a training period of
the data not used in calculating τe,m.

This approach delivers tests which, by design, are robust to the
nuisance parameters in the DGP discussed above. Heuristically, this
holds because the estimated critical values are obtained from an
empirical distribution function that, for large T, has the same
functional dependence on those nuisance parameters as does the
distribution function of τe,m itself.
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Subsample Regression t-statistics

Importantly, if no predictability holds in the training period, then the
resulting test based on τe,m and these estimated critical values is a
valid test for the null hypothesis of no predictability against the
alternative of predictability, in the context of the subsample of m
observations running from t = e−m + 1 to t = e.

The discussion above relates to a one-shot predictability test based on
τe,m. However, our goal is to develop a real-time monitoring
procedure for the emergence of an end-of-sample predictive regime.
To that end, we will construct a sequence of τe,m statistics, of the
form given in (8), calculated for each possible end-of-subsample date
e = T∗ + m, ..., E, where E ≤ T is used to denote the end of the
monitoring period, a parameter set by the practitioner. The predictive
regime detection procedure we propose will be based on a subset of
the resulting sequence of statistics.
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The Detection Procedure

The first step is to determine a critical value to use with the sequence
of τe,m, e = T∗ + m, ..., E, statistics from an initial training period,
t = 1, ..., T∗ where T∗ := bλTc for some λ ∈ (0, 1), and where
T∗ < e1 −m1 + 1.

Using the sequence of τe,m statistics that make use of data within this
training period, i.e. τe,m for e = m + 1, ..., T∗, calculate an empirical
critical value for a significance level π, say. Denote this empirical
critical value by cvπ.

Under the conditions placed on (1), it follows from Andrews (2003)
and Andrews and Kim (2006) that cvπ is a consistent estimate for
the true π significance level critical value as T → ∞.
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The Detection Procedure

Next, start the monitoring period by calculating the first statistic τe,m
which does not use any of the training period data; ie, τT∗+m,m
(which uses data from t = T∗ + 1 to t = T∗ + m), and compare this
with the training period critical value cvπ.

Then, move forwards one period, calculating τT∗+m+1,m, again
comparing the statistic with cvπ.

Proceed sequentially in this manner, comparing τe,m,
e = T∗ + m, T∗ + m + 1, ..., with cvπ as we move forwards in time.

Use Re := 1(τe,m > cvπ) to record whether or not each test statistic
in the sequences exceeds the critical value.
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The Detection Procedure

To reliably detect a predictive regime, such that the false positive
detection rate [FPR] of the procedure can be properly controlled, we
do not simply take a single exceedance Re = 1 to be sufficient
evidence. Rather we consider identifying a predictive regime when
there is a contiguous sequence of exceedances that exceed some
minimum length requirement.

Specifically, for U ≥ L, let

R(L, U) := (U− L + 1)
U

∏
e=L

Re

so that, when R(L, U) is non-zero, it gives the length of contiguous
exceedances between e = L and e = U. We then determine that a
predictive regime is present when R(L, U) > m∗ for some choice of
m∗ > 1.
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The Detection Procedure

Notice that, as a result, the first time period at which it would be
possible to detect a predictive regime is t = T∗ + m + m∗, because
this is the first occasion where R(L, U) can exceed m∗ (here
R(T∗ + m, T∗ + m + m∗) = (m∗ + 1)∏T∗+m+m∗

e=T∗+m Re).

We then continue to apply this detection procedure as we move
forwards in time, up to our end-of-monitoring date, t = E. Clearly, to
be able to detect a predictive regime, it must be true that
E ≥ T∗ + m + m∗, and, for a sufficiently large E, it is clearly possible
for our procedure to detect multiple predictive regimes within the
time span T∗ + m, ..., E.

We next discuss a data-based method to choose m∗ and how it
relates to the associated FPR of the monitoring procedure.
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Choice of m∗ and the False Positive Detection Rate

Now consider the FPR of our proposed procedure; that is, the
probability of incorrectly identifying at least one predictive regime
when in fact none exists, when the monitoring has been run out to E.

Adapting the result of (6) to a statement regarding the location of
the longest contiguous sequence of exceedances Re, we can write

lim
T∗,E→∞

Pr
(

max
L,U∈[T∗+m,E]

R(L, U) > max
L,U∈[m+1,T∗]

R(L, U)

)
= α (9)

where adapting to the notation of (6),

b(1− α)Nc ≡ T∗ −m (10)

N− b(1− α)Nc ≡ E− (T∗ + m) + 1 (11)

and N ≡ T∗ −m + E− (T∗ + m) + 1 = E− 2m + 1.
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Choice of m∗ and the False Positive Detection Rate

Note that (9) is a statement regarding the limiting probability of the
longest contiguous sequence of exceedances lying in the monitoring
period as opposed to the training period.
For large N (and, hence, large T∗ and E), (10)-(11) imply that
α/(1− α) = (E− (T∗ + m) + 1)/(T∗ −m). This can be solved to
give a finite sample approximation for α as follows

α ≈ E− T∗ −m + 1
E− 2m + 1

. (12)

The practical implication of this result is that if we set m∗ to be the
longest contiguous sequence of exceedances in the training period;
that is, we set

m∗ = m̂∗ := max
L,U∈[m+1,T∗]

R(L, U) (13)

then, in large samples, the FPR of the resulting monitoring procedure
run up to E is given by α.
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Choice of m∗ and the False Positive Detection Rate

Here, α is a monotonically increasing function of E since

∂α

∂E
=

T∗ −m

(E− 2m + 1)2 > 0.

Hence, other things being equal, the longer the monitoring period,
the greater the likelihood of spuriously finding a predictive regime.

For any given monitoring horizon E, the result in (12) delivers an
approximation to the empirical FPR that would be obtained in
practice when setting m∗ = m̂∗.
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Choice of m∗ and the False Positive Detection Rate

To illustrate, suppose T∗ = 400 and m = 30, Figure 1 below shows this
approximation to the FPR as a function of E.
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So, eg, if we monitor out to E = 680, the FPR will be about 0.40.
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Choice of m∗ and the False Positive Detection Rate

We can also rearrange (12) as

E =
T∗ + m− 1− α(2m− 1)

1− α
(14)

which is useful if we wish to know the maximum monitoring horizon E
such that the FPR is controlled at α. For the current illustration, if
we wish to control this rate to α = 0.20, then (14) shows us that E
should be no more than about 520 (which is also apparent from
Figure 1).

Notice that none of this appears to relate directly to the choice of
significance level π. In fact, the dependence is implicit because π
influences the lengths of the contiguous rejections: the larger is π,
the smaller is cvπ and the longer we would expect the sequences of
contiguous rejections to be. This, in turn, will influence the value that
m̂∗ in (13) takes.
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Choice of m∗ and the False Positive Detection Rate

In fact any sensible threshold value could be used. A benefit of the
estimated critical value approach is that where the training period
contains no predictive regimes each individual test in our monitoring
sequence can be interpreted marginally as a test for predictability in
that particular subsample.

If one or more short duration predictive regimes are present in the
training period although the large (in T) sample properties of the
estimated critical value would be unaffected, for a given finite length
training period we would expect both cvπ and m̂∗ to increase relative
to the case where the training period was non-predictive. We might
therefore anticipate some reduction in the ability of the procedure to
detect genuine predictive regimes present in the monitoring period
due to the increase in m̂∗. We will explore this using simulations later.
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Choice of m∗ and the False Positive Detection Rate

Thus far we assumed no separation between the training and
monitoring periods, with the former spanning t = 1, ..., T∗ and the
latter starting at t = T∗ + 1.

More generally, the last time period included in the training sample
could be T∗ − k for some k > 0, thereby allowing for a separation
between the training period and the start of the monitoring period.
This might be relevant in cases where a predictability regime was
thought to have occurred towards the end of the largest possible
training period. This also provides a way to vary the FPR of the
procedure based on m̂∗, for a given E. The foregoing expressions can
be easily modified for this.
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Choice of m∗ and the False Positive Detection Rate

It is also possible that the training period could potentially contain
longer periods of predictability, including the case where predictability
holds throughout the training period.

In the latter case a test based on τe,m and the estimated critical
values from the training period is a test for structural change in the
slope parameter of the predictive regression in the subsample
t = e−m + 1, ..., e relative to its value in the training period.

In practice, we recommend applying standard full-sample
predictability tests to the training period to investigate whether the
assumption of no predictability appears valid.
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Dating of Predictive Regimes

Our key aim here is one of detecting the emergence of a predictive
regime in real-time. However, one could conceive of an historical
exercise in data analysis where we look to date any predictive
episodes identified within the available range of sample data.

A liberal, or weak, start date for any predictive episode signalled by
our procedure is the first data point in the sample used for the first
statistic in this set of contiguous exceedances. A corresponding weak
end date for the episode is the last sample observation in the last of
these contiguous exceedances. It is therefore possible for separate
identified predictive episodes to overlap for weak dates.

We could also consider an alternative dating approach where the
predictive regime is characterised by the subset of dates for which
every time the date is present in the test data, an exceedance is
obtained. Such strong dates cannot overlap for separate identified
predictive episodes, and could be an empty set for a given identified
predictive episode.
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Finite Sample Properties of the Monitoring Procedure

We present the results from 8 sets of MC simulation experiments
based on the DGP

yt =
n

∑
j=1

βjdt(ej, mj)xt−1 + εy,t, t = 1, ..., T, εy,t ∼ NIID(0, 1)

xt = ρxt−1 + εx,t, t = 1, ..., T, εx,t ∼ NIID(0, 1)

with x0 = 0 and rx,y = −0.90.

Upper tailed tests throughout. MATLAB, 5000 MC reps.

Set T = 493 and T∗ + m = 302 consistent with our empirical
application. Set window width m = 30.

The ranges of values for ρ and β1 considered were chosen following a
preliminary analysis of the data used in the empirical application, as
was rx,y.
For all of the experiments we report, graphs will be used to show the
empirical frequencies with which at least one PR was signalled by the
procedure taken across the whole monitoring period.
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Finite Sample Properties of the Monitoring Procedure

The first set of experiments study “power” to detect a single
predictive regime [PR] as a function of
β1 = {0.10, 0.20, 0.30, 0.40, 0.50, 1.00} for
ρ = {0.965, 0.975, 0.985, 0.995}, setting π = 0.10.

First we assume a short monitoring period that ends at E = 328,
consistent with an FPR at time E of α = 0.10.

NB if β1 = 0⇒ n = 0 and there are no PRs, the detection frequency
obtained is an empirical FPR at time E.

If a PR occurs in the monitoring period, detection power depends on
the length of the regime (m1), its strength (β1), and on when the PR
starts relative to the start of monitoring. For the latter we considered
five different PR start dates: (a) t = 287 (15 observations before the
start of monitoring), (b) t = 297 (5 obs before the start of
monitoring), (c) t = 302 (at the same time as the start of
monitoring), (d) t = 307 (5 obs after the start of monitoring), (e)
t = 317 (15 obs after the start of monitoring). In each case m1 = 30.
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Finite Sample Properties of the Monitoring Procedure

The “power” curves indeed all start from approximately 0.10,
consistent with the theoretical FPR at the end of the monitoring
period of 0.10.

For cases (a)-(c) when the PR starts before or at the same time as
the start of monitoring, power rises rapidly with β1.

For cases (d) and (e) when the PR starts after the start of
monitoring, a higher proportion of the subsamples used when
computing τe,m will be data from the period of the DGP when no
predictability exists. Furthermore, in these two cases monitoring ends
shortly after the predictive regime starts (e.g. for case (e), monitoring
ends 11 observations after the predictive regime starts). Therefore, as
expected, power rises with β1 at a lower rate than for cases (a)-(c)
and ultimately flattens out at a lower value.
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 328, m1 = 30, m = 30
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 362, m1 = 30, m = 30
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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Finite Sample Properties of the Monitoring Procedure

In empirical applications, whilst there might be a particular reason for
favouring a short monitoring period, for PRs that happen to start
towards the end of a short monitoring period the power of our
procedure to detect their presence could be significantly improved if
we monitor for a longer period of time.

To investigate this issue in more detail, in the second set of
experiments we repeat the first set of experiments employing the
same simulation DGP and predictive regime dates, but extending the
monitoring period to E = 362 which is consistent with a FPR at the
end of the monitoring period of α = 0.20.
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Finite Sample Properties of the Monitoring Procedure

As expected, when the monitoring period is extended to E = 362, PR
detection frequency as a function of β1 increases.

Indeed the results are now virtually identical for each of the PR start
dates considered here and all of the curves flatten out quickly as β1
increases.

This is because due to the longer monitoring period, each set of
sequential τe,m statistics now includes a run of statistics computed
using subsamples where a high proportion of each subsample is data
from when predictability exists in the DGP.

When β1 = 0 the empirical FPR at the end of monitoring increases to
approximately 0.20, again as expected.

Notice, comparing (a) for E = 328 and E = 362, that except for very
small values of β1, “power” is almost unrelated to the FPR.
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Finite Sample Properties of the Monitoring Procedure

The third set of experiments study detection power as a function of
its length, m1, for E = 328 and for the PR dates used in the previous
cases. We consider m1 = {10, 15, ..., 60}. We set ρ = 0.995 and
consider β1 = {0.25, 0.50, 0.75, 1.00}.
In the fourth set of experiments we repeat the third set, but
extending the monitoring period to E = 362.
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PR detection frequency as a function of m1: T∗ + m = 302, E = 328, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency as a function of m1: T∗ + m = 302, E = 362, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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Finite Sample Properties of the Monitoring Procedure

E = 328

For E = 328 power is seen to initially increase with m1. For case (a)
the curve flattens out at between 0.85 and 0.95 (depending on the
value of β1) when m1 = 40. For cases (b)-(e) the curve flattens out
earlier and at a lower value.

This pattern reflects the fact that as we move from cases (a) to (e),
the PR starts progressively later and so the value of m1 such that the
end of the PR lies beyond E gets smaller.

Hence for case (e), the curve is relatively flat for m1 > 10 because the
monitoring period ends 11 observations after the start of the PR.
Therefore, in this case, further increases in m1 above 10 do not lead
to any further increase in the power.
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Finite Sample Properties of the Monitoring Procedure

E = 362
For E = 362 power, as function of m1, is now very similar, irrespective
of when the PR occurs. With the monitoring period finishing later in
the sample there are sufficient observations in the monitoring period
for increases in m1 to translate through to increases in power before
the monitoring period ends.

In all of the cases (a)-(e) the curve indicates that our procedure has a
very high probability of successfully detecting a predictive regime
when m1 ≥ 40.
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Finite Sample Properties of the Monitoring Procedure

The fifth through eighth sets of experiments repeat the first four sets
but with a PR in the training period at time t = bT∗/2c with
m1 = 15 and β1 = 0.25. Hence, n = 2 in the DGP.

This first PR is relatively short as these are more difficult to identify.
A long PR in the training period would likely be detectable and could
then be corrected for.

The value of m̂∗ selected for monitoring, was on average found to be
slightly larger than the corresponding value in the first four sets of
experiments.

As a result, the power curves are generally lower in these experiments
than in the first four sets of experiments. Generally around 5-10%
drops for E = 328 but much less for E = 362.

For larger values of m2 (e.g. m2 ≥ 50) and larger values of β2 there is
virtually no loss of power relative to the original results.
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 328, m1 = 30, m = 30
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 328, m1 = 15, m2 = 30, m = 30
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 362, m1 = 30, m = 30
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency for different values of ρ: T = 493, T∗ + m = 302, E = 362, m1 = 15, m1 = 30, m = 30
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency as a function of m1: T∗ + m = 302, E = 328, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency as a function of m2: T∗ + m = 302, E = 328, m1 = 15, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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PR detection frequency as a function of m1: T∗ + m = 302, E = 362, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring

10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) 15 observations after the start of monitoring
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PR detection frequency as a function of m2: T∗ + m = 302, E = 362, m1 = 15, m = 30, ρ = 0.995
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring
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Finite Sample Properties of the Monitoring Procedure

To investigate robustness to conditional and/or unconditional
heteroskedasticity, and to non-Gaussian errors, we repeated a
selection of the simulation experiments discussed above using the
same DGPs but for a range of error distributions and
heteroskedasticity patterns for εy,t in (1), specifically: (i) t(10) error
terms; (ii) t(5) error terms; (iii) normally distributed GARCH(1,1)
error terms with GARCH parameters α0 = 0.10, α1 = 0.10, β = 0.80;
(iv) t(5) GARCH(1,1) error terms with the same GARCH parameters,
and (v) t(5) error terms with an unconditional volatility shift during
the monitoring period from σy = 1 to σy = 2.

In each case very similar results were obtained to the results from the
original experiments.
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Empirical Application - The Data

The dataset used is monthly observations on the equity premium for
the S&P Composite index calculated using CRSP’s month-end values
and on 20 different predictors for the period 1974:12-2015:12
(T = 493).

We define the equity premium as in Goyal and Welch (2008) and
Neely et al. (2014) as the log return on the value-weighted CRSP
stock market index minus the log return on the risk-free Treasury bill:
yt = log(1 + Rm,t)− log(1 + Rf ,t) where Rm,t is the CRSP return and
Rf ,t is the Treasury bill return.

Ten of the predictors are traditional macroeconomic and financial
variables (MFVs) and ten are binary technical analysis indicators
(TAIs) also used by Neely et al. (2014) in their analysis of equity
premium predictability.
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Empirical Application - The Data

Brock et al. (1992) study the ability of moving average and trading
range break trading rules to predict the Dow Jones Industrial Average
(DJIA) index using daily data from 1897 through to 1986, finding
strong statistically significant evidence that the trading strategies
generated abnormal returns that cannot be explained by serial
correlation or conditional heteroskedasticity in the returns.

More recently Neely et al. (2014) have investigated the in-sample and
out-of-sample predictive power of binary TAIs in a predictive
regression-based context using monthly data. Indicators are
constructed from moving-average rules, momentum rules, and
on-balance volume rules. They find that the TAIs have predictive
power that matches or exceeds traditional MFVs used as predictors.
They also show that combining information from TAIs and MFVs
significantly improves equity risk premium forecasts versus using
either type of predictor in isolation.
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Empirical Application - The Data

The TAIs used are four moving average indicators (MAIs), two
momentum indicators (MOIs), and four on-balance volume (OBV)
indicators.

The four moving-average rule indicators (MAIs,l,t) are,

MAIs,l,t :=

{
1, if MAs,t ≥ MAl,t, indicating a buy signal

0, otherwise,

where MAj,t := (1/j)
j−1
∑

i=0
Pt−i for j = {s, l} and s = {1, 2},

l = {9, 12} and where Pt is the level of the S&P Composite index.

The two l-period momentum rule indicators (MOIl,t) are,

MOIl,t :=

{
1, if Pt ≥ Pt−l, indicating a buy signal

0, otherwise,

where l = {9, 12}.
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Empirical Application - The Data

The four on-balance volume rule indicators (OBVs,l,t) are,

OBVs,l,t :=

{
1, if MAOBV

s,t ≥ MAOBV
l,t , indicating a buy signal

0, otherwise,

where MAOBV
j,t := (1/j)

j−1
∑

i=0
obvt−i for j = {s, l} and s = {1, 2},

l = {9, 12}, and, obvt :=
t

∑
k=1

VOLkDk, where VOLk is trading volume

for the S&P Composite index in period k and Dk is a binary variable,

Dt :=

{
1, if Pt ≥ Pt−1

−1, otherwise.
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Empirical Application - The Data

Macroeconomic and financial variables (MFVs)
1. log dividend yield (dyt−1)
2. log dividend-price ratio (dpt−1)
3. log earnings-price ratio (ept−1)
4. book-to-market ratio (bmt−1)
5. short term yield (stt−1)
6. long-term yield (ltt−1)
7. long-term - short-term yield spread (spt−1 = ltt−1 − stt−1)
8. BAA-AAA corporate bond yield spread (dspt−1)
9. net equity expansion (ntist−1)
10. inflation (inft−1)

Technical analysis indicators (TAIs)
1. 1-9 moving average rule (MAI1,9,t−1)
2. 1-12 moving average rule indicator (MAI1,12,t−1)
3. 2-9 moving average rule (MAI2,9,t−1)
4. 2-12 moving average rule (MAI2,12,t−1)
5. 9 period momentum rule (MOI9,t−1)
6. 12 period momentum rule (MOI12,t−1)
7. 1-9 on balance volume rule (OBV1,9,t−1)
8. 1-12 on balance volume rule (OBV1,12,t−1)
9. 2-9 on balance volume rule (OBV2,9,t−1)
10. 2-12 on balance volume rule (OBV2,12,t−1)
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Figure 10. Excess returns and MFVs
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Empirical Application - The Data

The data used to construct the equity premium and the predictors are
taken from the updated monthly data set on Amit Goyal’s website
(www.hec.unil.ch/agoyal/) which is an extended version of the
data set used by Welch and Goyal (2008).

The traditional MFVs are in log form (as in Goyal and Welch, 2008;
Neely et al., 2014) and each of the predictors is lagged one period.

Financial theory suggests negative predictive power for stt−1, ltt−1,
ntist−1 and inft−1 and we therefore multiply each of these predictors
by -1 so that a right-sided test is appropriate for detecting
predictability.

Robert Taylor, Essex Detecting Regimes of Predictability March 2019 67 / 104



Empirical Application - Preliminary Analysis

Preliminary results for the full sample, 12/74-12/15

β̂ tNW IVcomb R2(%) R̄2(%)
MFVs

dyt−1 0.546 1.265 0.506 0.313 0.110
dpt−1 0.576 1.300* 0.606 0.345 0.141
ept−1 0.424 0.743 1.072 0.225 0.022
bmt−1 0.497 0.679 0.544 0.106 -0.098
stt−1 0.042 0.743 0.350 0.116 -0.087
ltt−1 0.036 0.513 0.398 0.056 -0.148
spt−1 0.108 0.826 -0.025 0.129 -0.075
dspt−1 0.135 0.216 0.064 0.021 -0.183
ntist−1 -0.005 -0.031 0.883 0.000 -0.204
inft−1 0.518 0.775 0.656 0.148 -0.056

TAIs
MAI1,9,t−1 0.431 0.838 0.513 0.200 -0.004
MAI1,12,t−1 0.647 1.125 1.142 0.415 0.212
MAI2,9,t−1 0.453 0.870 1.126 0.215 0.012
MAI2,12,t−1 0.802 1.490* 1.766* 0.648 0.445
MOI9,t−1 0.370 0.635 0.209 0.136 -0.067
MOI12,t−1 0.350 0.567 0.623 0.116 -0.088
OBV1,9,t−1 0.491 1.011 0.045 0.269 0.065
OBV1,12,t−1 0.679 1.281 0.150 0.488 0.285
OBV2,9,t−1 0.759 1.503* 0.478 0.637 0.434
OBV2,12,t−1 0.776 1.451* 0.761 0.642 0.439

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is 1.282. The critical value used for
IVcomb is ± 1.645.
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Empirical Application - Preliminary Analysis

For both the MFVs and the TAIs, very little evidence of predictability
is provided by full sample tests. Eg using the IVcomb test of Breitung
and Demetrescu (2015) For the MVFs there is no statistically
significant evidence of predictability from IVcomb at conventional
significance levels, and only a single rejection at the 10% significance
level for the TAIs.

We also checked the training samples for predictability. For the
monitoring application below, our initial choice of training periods is
12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and
12/74-01/95 (for m = 60). These are the implied training periods
given by T∗ = 302−m, where observation t = 302 is the date at
which monitoring starts in the application below, 01/00.
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MFVs: preliminary results for each training period used when monitoring with m = {20, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 20

dyt−1 -0.328 -0.424 -0.132 0.061 -0.298
dpt−1 -0.182 -0.243 0.226 0.019 -0.340
ept−1 0.026 0.041 -0.017 0.001 -0.358
bmt−1 -0.237 -0.276 -0.233 0.027 -0.331
stt−1 0.146 2.157* 2.440* 0.933 0.578
ltt−1 0.179 1.624* 2.380* 0.762 0.406
spt−1 0.172 1.179 1.179 0.370 0.013
dspt−1 0.414 0.700 1.270 0.220 -0.138
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 1.290 1.902* 1.376 0.868 0.512

m = 30
dyt−1 -0.262 -0.260 -0.086 0.031 -0.342
dpt−1 -0.125 -0.129 0.175 0.007 -0.365
ept−1 0.084 0.122 0.008 0.005 -0.367
bmt−1 -0.189 -0.204 -0.135 0.016 -0.355
stt−1 0.146 2.120* 2.466* 0.943 0.575
ltt−1 0.181 1.554* 2.442* 0.747 0.378
spt−1 0.186 1.276 1.144 0.436 0.066
dspt−1 0.477 0.776 1.409 0.283 -0.087
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 1.283 1.835* 1.333 0.854 0.485

m = 60
dyt−1 1.513 1.088 0.890 0.651 0.234
dpt−1 1.721 1.305 1.035 0.823 0.408
ept−1 0.569 0.770 0.632 0.226 -0.192
bmt−1 0.854 0.787 0.675 0.272 -0.145
stt−1 0.112 1.556* 2.405* 0.569 0.153
ltt−1 0.108 0.838 2.200* 0.241 -0.177
spt−1 0.212 1.450* 1.027 0.602 0.186
dspt−1 1.084 1.758* 2.197* 1.316 0.903
ntist−1 0.362 2.717* 1.434 1.926 1.441
inft−1 0.928 1.244 0.929 0.446 0.029

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is 1.282. The critical value used for
IVcomb is ± 1.645. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for
m = 60) for all predictors other than ntist−1. For ntist−1 the training periods are 12/74-12/91 for all values of m.
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TAIs: preliminary results for each training period used when monitoring with m = {20, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 20

MAI1,9,t−1 -0.503 -0.862 -0.660 0.276 -0.082
MAI1,12,t−1 -0.043 -0.075 0.261 0.002 -0.357
MAI2,9,t−1 -0.067 -0.126 0.245 0.005 -0.354
MAI2,12,t−1 0.215 0.411 0.837 0.046 -0.313
MOI9,t−1 -0.230 -0.386 0.275 0.053 -0.305
MOI12,t−1 -0.447 -0.691 0.275 0.183 -0.175
OBV1,9,t−1 0.380 0.692 0.756 0.157 -0.201
OBV1,12,t−1 0.220 0.333 0.394 0.048 -0.310
OBV2,9,t−1 0.533 0.859 0.961 0.293 -0.064
OBV2,12,t−1 0.230 0.342 0.735 0.053 -0.305

m = 30
MAI1,9,t−1 -0.528 -0.896 -0.693 0.309 -0.062
MAI1,12,t−1 -0.060 -0.104 0.236 0.004 -0.368
MAI2,9,t−1 -0.086 -0.159 0.218 0.008 -0.364
MAI2,12,t−1 0.201 0.380 0.819 0.040 -0.331
MOI9,t−1 -0.250 -0.416 0.249 0.064 -0.308
MOI12,t−1 -0.468 -0.717 0.248 0.204 -0.167
OBV1,9,t−1 0.367 0.663 0.729 0.150 -0.222
OBV1,12,t−1 0.206 0.309 0.360 0.043 -0.329
OBV2,9,t−1 0.522 0.834 0.934 0.286 -0.084
OBV2,12,t−1 0.215 0.318 0.707 0.048 -0.324

m = 60
MAI1,9,t−1 -0.792 -1.317 -1.090 0.703 0.288
MAI1,12,t−1 -0.302 -0.506 -0.101 0.094 -0.324
MAI2,9,t−1 -0.251 -0.448 0.016 0.068 -0.349
MAI2,12,t−1 -0.030 -0.055 0.562 0.001 -0.418
MOI9,t−1 -0.503 -0.829 -0.039 0.265 -0.153
MOI12,t−1 -0.659 -0.997 -0.049 0.414 -0.003
OBV1,9,t−1 0.130 0.228 0.460 0.019 -0.399
OBV1,12,t−1 -0.026 -0.038 0.033 0.001 -0.418
OBV2,9,t−1 0.299 0.463 0.643 0.096 -0.322
OBV2,12,t−1 -0.019 -0.028 0.402 0.000 -0.418

Note. * denotes statistical significance at the 10% level. The critical value used for tNW is 1.282. The critical value used for
IVcomb is ± 1.645. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for
m = 60).
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Empirical Application - Preliminary Analysis

For the two interest rate series stt−1 and ltt−1, and the bond yield
spread dspt−1, there is statistically significant evidence of
predictability at conventional significance levels from IVcomb for one or
more values of m. The rejections do not appear to be driven by
predictability at the end of these samples. Therefore, in the
monitoring application we continue to use the implied training periods
for these three predictors despite the rejections from IVcomb.

Statistically significant evidence of predictability from IVcomb is also
obtained for ntist−1, for all values of m. In this case, we find that
predictability is concentrated in the data from 01/92 through to the
end of the training periods. Hence, for this predictor and for all values
of m, we end the relevant training periods at 12/91 in the monitoring
application.

For all of the other MFV and TAI predictors no statistically significant
evidence of predictability is found from IVcomb using the implied
training periods.
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Empirical Application - Monitoring Results

We assume that a practitioner applies our real-time monitoring
procedure from 01/00, so in all cases T∗ + m = 302. Results are
presented assuming monitoring continues through to the final
observation in the data set, 12/15.

In real-world applications it is not envisaged that our procedure would
be used for continuous monitoring over anything like such a long
period, but it is helpful to present the results through to 12/15 to
illustrate the relationship between the length of the monitoring period
and the FPR.

Results are computed for m = {20, 30, 60}, for both 10% and 5%
level estimated critical values, i.e. cvπ for π = {0.10, 0.05}.
For each predictor and value of m considered, the value of m̂∗ and the
number of predictive regimes detected are ...
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Empirical Application - Monitoring Results MFVs

MFVs: m̂∗ and number of predictive regimes detected

m = 20 m = 30 m = 60
π 0.10 0.05 0.10 0.05 0.10 0.05

m̂∗
dyt−1 9 6 6 6 8 4
dpt−1 7 2 11 3 11 4
ept−1 3 2 4 3 16 5
bmt−1 10 4 14 4 8 3
stt−1 9 8 17 9 5 3
ltt−1 10 4 17 4 9 3
spt−1 8 4 16 5 15 4
dspt−1 8 6 8 7 5 4
ntist−1 7 5 6 3 10 5
inft−1 16 6 9 5 15 9

Number of predictive regimes detected
dyt−1 0 0 0 0 2 2
dpt−1 0 0 0 0 3 2
ept−1 1 2 3 0 1 0
bmt−1 1 1 0 0 1 1
stt−1 0 0 0 0 0 0
ltt−1 1 3 1 1 2 1
spt−1 0 0 0 0 0 0
dspt−1 1 0 0 0 0 0
ntist−1 0 0 0 0 0 0
inft−1 0 0 0 0 0 0

Note. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60) for all
predictors other than ntist−1. For ntist−1 the training periods are 12/74-12/91 for all values of m.
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Empirical Application - Monitoring Results MFVs

It can be seen in the first half of the table that, as expected, the
largest number of contiguous rejections over the training period for
each predictor, m̂∗, is sensitive to the value of π used (the test
statistic significance level), being larger for π = 0.10 than for
π = 0.05.

The second half of the table shows that in total, either one, two or
three PRs are detected for six of the ten MFVs when π = 0.10 and
for five of the MFVs when π = 0.05.

Note that the number of PRs detected varies depending on the
predictor and the value of m used. For ept−1 and ltt−1, one or more
PRs are detected for all values of m considered. For bmt−1, a single
PR is detected when m = 20 and m = 60, while for dyt−1 and dpt−1
two or three PRs are detected when m = 60 (but for these predictors
no regimes are detected when m = 20 or m = 30). For dspt−1 a
single PR is detected only when m = 20.
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Empirical Application - Monitoring Results TAIs

TAIs: m̂∗ and number of predictive regimes detected

m = 20 m = 30 m = 60
π 0.10 0.05 0.10 0.05 0.10 0.05

m̂∗
MAI1,9,t−1 12 8 23 8 9 6
MAI1,12,t−1 10 5 8 4 9 8
MAI2,9,t−1 12 7 22 8 6 3
MAI2,12,t−1 10 5 8 7 9 8
MOI9,t−1 4 3 5 4 12 6
MOI12,t−1 7 5 10 6 10 6
OBV1,9,t−1 11 7 14 9 10 7
OBV1,12,t−1 10 4 8 4 14 8
OBV2,9,t−1 8 6 7 6 10 6
OBV2,12,t−1 4 3 8 3 8 3

Number of predictive regimes detected
MAI1,9,t−1 1 1 1 1 2 1
MAI1,12,t−1 0 0 2 2 3 2
MAI2,9,t−1 0 1 2 0 2 2
MAI2,12,t−1 0 0 2 1 3 3
MOI9,t−1 3 1 3 3 2 3
MOI12,t−1 0 0 2 3 2 2
OBV1,9,t−1 0 1 1 1 1 3
OBV1,12,t−1 0 1 2 2 1 2
OBV2,9,t−1 1 0 0 0 2 0
OBV2,12,t−1 1 1 1 1 3 3

Note. The training periods are 12/74-05/98 (for m = 20), 12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60).
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Empirical Application - Monitoring Results TAIs

The m̂∗ values reported in the first half of Table 6 are broadly similar
to those obtained for the MFVs, but on average are slightly higher.

For all of the TAIs either one, two, or three predictive regimes are
detected for at least one of the values of m considered. Consistent
with the findings in Neely et al. (2014), we therefore find stronger
evidence of predictability for the TAIs than for the MFVs.
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Empirical Application - Monitoring Results TAIs

NB the TAI predictors are 0-1 dummy variables and often take the
same value for several consecutive observations: the subsample τe,m
values can therefore be undefined if the TAI does not change over the
subsample. A large number of these in the training period could have
a detrimental impact on the finite sample performance of the
procedure. Effect likely to be greater the smaller is m. In practice, we
recommend using m ≥ 60 with these particular TAIs to minimize the
number of undefined statistics over the training period.

Alternatively, for a given m, reducing the value of l in the TAIs will
result in fewer undefined statistics. In the application here we report
results for l = {9, 12} to be consistent with the regression-based
analysis of TAIs in Neely et al. (2014), even though for some of the
MOIs and OBV indicators with m = 60 and these values of l, τe,m is
occasionally undefined over the training and/or monitoring period.
For the MAIs with l = {9, 12} and m = 60 there are no undefined
test statistics.
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Empirical Application - Further Monitoring Results

Next graphs for those cases where at least one PR is signalled for
π = 0.10, displaying τe,m starting 5 years before the end of each
training period. Indicated are the end of the training period T∗, the
date when monitoring starts T∗ + m, the date of the first significant
rejection for the i-th PR ji, the date at which the i-th PR is detected
ji + m̂∗, the FPR as a function of E, the weak set of PR dates and,
where relevant, the strong set of PR dates.

Neely et al. (2014) find that for both the MFVs and TAIs
predictability is substantially higher over recessions than expansions.
So we also include the NBER indicator of recessions to see if our
procedure finds a similar pattern of support for predictability over the
business cycle. There are two NBER US recessions over the
monitoring period 01/00-12/15: one short recession in early 2001
(specifically, March 2001-November 2001), and one major recession
associated with the global financial crisis (December 2007-June 2009).
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(a) dyt−1, m = 60
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(b) dpt−1, m = 60
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Empirical Application - Further Monitoring Results, MFVs

For dyt−1 with m = 60, the τe,m test first rejects at 06/01 and a PR
is signalled at 02/02 (FPR 0.12) with the weak dates 07/96-05/02.
This PR is consistent with the period of the dot-com bubble, being
detected towards the end of the boom with the associated PR ending
shortly after the crash.

A further PR is signalled in 11/05 (FPR 0.28), with weak dates
04/00-02/06 which overlap with the first PR dates.

Similar results for dpt−1 with m = 60, except a third PR is detected in
01/15. According to the weak sets of dates for each PR, dpt−1
therefore had predictive power for the equity premium over the
majority of the monitoring period.

The breakdown of predictability during 03/06-02/09 correlates with a
decline in the equity premium due to the global financial crisis. The
weak dates suggest that although the predictive relationship between
dpt−1 and the equity premium was not present at the height of the
global financial crisis, it reappeared in early 2009.
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Empirical Application - Further Monitoring Results, MFVs

For ept−1 and m = 20 a single PR is signalled in 02/04 [FPR 0.16]
with weak dates, 04/02-02/04. For m = 30 three PRs are signalled in
01/04, 03/08, and 09/15. On weak dates, the first PR ends two
months after its detection, while the second and third end
immediately after detection. For m = 60 a single PR is detected in
12/04 with weak dates 09/98-06/06.

The results for bmt−1, m = 20 and m = 60, are similar to those for
dpt−1 in that the PR is detected early in the monitoring period around
the time of the dot-com bubble, and ends one month later.

For ltt−1 with m = 20 a single PR is detected in 09/03 with weak
dates 04/01-03/04. For m = 30 similar results are seen. For m = 60
two PRs are detected in 08/05 and 11/12. Recall for this predictor,
statistically significant evidence of predictability is detected during all
three training periods.
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(c) ept−1, m = 20
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(d) ept−1, m = 30
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(e) ept−1, m = 60
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(f) bmt−1, m = 20
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(g) bmt−1, m = 60
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(h) ltt−1, m = 20
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(i) ltt−1, m = 30

95 00 05 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Robert Taylor, Essex Detecting Regimes of Predictability March 2019 90 / 104



(j) ltt−1, m = 60
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(k) dspt−1, m = 20
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Empirical Application - Further Monitoring Results, MFVs

For dspt−1 with m = 20 a single PR is detected in 12/12 with weak
dates 09/10-01/13. Interestingly, this period is one in which the
Federal Reserve was operating quantitative easing. The results
suggest that this may have influenced the predictive relationship
between the yield spread and the equity premium at this time.

For nearly all the MFVs results, the contiguous run of τe,m rejections
associated with each PR ends shortly after detection. Consequently
the strong set of dates for each predictor is empty. From a practical
perspective this suggests that although investors using our procedure
in real-time would have been able to detect predictability, there would
have been very little time after the point of detection to exploit the
predictability before it no longer existed. Consistent with the view of
Paye and Timmermann (2006) and Timmermann (2008) that if
predictability reflects market inefficiencies then it is only ever likely to
be a short-lived phenomenon because when it exists, investors will
quickly allocate capital to exploit its presence.
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Empirical Application - Further Monitoring Results, MFVs

Consider now the sequential τe,m values in these graphs relative to the
NBER indicator of recessions and expansions. Interestingly, in some
cases there is evidence suggesting that, consistent with the findings in
Neely et al. (2014), predictability is stronger during recessions than
during expansions, but it is not a pattern obtained for all of the
predictors.

Eg for ept−1 [figures (c)-(e)], τe,m peaks during both the 2001 and
2008-2009 recessions for all three values of m. However for ltt−1
[figures (h)-(j)] the statistics fall during or at the start of both
recessions. For dyt−1 and dpt−1 [figures (a) and (b)] τe,m peaks
during the first recession but reaches a minimum during the
2008-2009 recession.
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Empirical Application - Further Monitoring Results, TAIs

For brevity, TAI results just for m = 60, s = 1.

For MAI1,9,t−1, a first PR is signalled in 06/04 [FPR 0.23] and a
second in 03/09 [FPR 0.38]. The first is correlated with the dot-com
bubble (although not detected until after the crash) and the second
with the global financial crisis. The weak set of dates for the PRs are
10/98-02/06 and 07/03-08/13. For the second PR the strong set of
dates is non-empty, 06/08-09/08.

For both PRs the contiguous rejections continue for much longer after
detection than for the MFVs. For the first (second) PR they continue
for 20 months (over 4 years) after detection. If these results reflect
market inefficiencies, then this finding suggests that investors were
slower to exploit the inefficiencies for this TAI than for the MFVs,
allowing the predictability to persist for a longer period.

For MAI1,12,t−1, similarly to MAI1,9,t−1, two PRs are signalled in
04/04 and 03/09. An earlier short PR is also detected at 09/02,
again apparently correlated with the dot-com bubble and crash.
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(a) MAI1,9,t−1, m = 60
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(b) MAI1,12,t−1, m = 60
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(c) MOI1,9,t−1, m = 60
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(d) MOI1,12,t−1, m = 60
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(e) OBV1,9,t−1, m = 60
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(f) OBV1,12,t−1, m = 60
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Empirical Application - Further Monitoring Results, TAIs

The results for MOI9,t−1 and MOI12,t−1 are similar to the results for
the MAIs, in the sense that the first PR identified is again correlated
with the dot-com bubble, the second with the global financial crisis,
and the contiguous rejections continue for a longer period of time
after the PRs are first detected than we found for the MFVs.

For both of these predictors the strong set of dates for the first PR is
not empty. Because the first PR is detected earlier in the monitoring
period for the MOIs than for the MAIs, the associated FPR is lower,
being approximately 0.12 for both of the MOIs (for both of the MOIs
the test statistic is undefined because the indicator has a fixed value
for the period 2000-2001).

For the volume-based indicator OBV1,9,t−1 a single PR is detected in
05/10 and similar to the other TAIs the contiguous rejections continue
for several years after the initial detection date. For OBV1,12,t−1, a PR
is detected six-months earlier in 12/09 and the contiguous rejections
continue through to 08/13 (τe,m is undefined between 1999-2000).
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Empirical Application - Further Monitoring Results, TAIs

Neely et al. (2014) find that similar to the MFVs, predictive
regression models with TAIs have larger R2 values for the NBER
recession periods than for the expansion periods suggesting stronger
in-sample predictability during recessions.

There is evidence supporting this argument in our results. Consider,
eg, MAI1,12,t−1. A first PR is detected at 09/02 shortly after the 2001
recession and the second during the 2008-2009 recession. Notice also
that for this predictor τe,m exceeds the relevant critical value line over
the 2001 recession, but this is not recognised as a PR because the
contiguous run of rejections does not exceed the m̂∗ threshold (this
does not happen until 09/02). For both of the MOIs, PRs are
detected during or shortly after the 2001 and 2008-2009 recessions,
and for the volume-based indicators PRs are detected shortly after the
2008-2009 recession.
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Conclusions

We have developed a new real-time monitoring procedure for
detecting the emergence of predictive regimes based on the sequential
application of standard heteroskedasticity-robust (predictive)
regression t-statistics for predictability to end-of-sample data.

Critical values are estimated using subsampling methods over a
training period. A predictive regime is signalled once a certain
number m∗ (set by the practitioner) of consecutive t-statistics in the
sequence exceed this critical value. We suggest a data-based
procedure for choosing m∗, based on the longest run of exceedances
in the training period, such that the false positive rate can be
controlled, for a given monitoring period.

Application to predictability of U.S. equity premium at the one-month
horizon by macroeconomic and financial variables, and by binary
technical analysis indicators. Results suggest the one-month ahead
equity premium has displayed episodes of temporary predictability
which could have been detected in real-time using our methodology.
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