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I Bootstrap methods involve estimating a model many times using
simulated data. Quantities computed from the simulated data are
then used to make inferences from the actual data. The term
bootstrap was coined by Efron (1979, AoS). One major reason for
their increasing popularity in recent years is the staggering drop in
the cost of numerical computation.

I Although bootstrapping is widely used, it is not always well
understood. In practice, bootstrapping is often not as easy to do,
and does not work as well, as seems to be widely believed.

I There are many di�erent bootstrap methods. Some are very easy to
implement, and some can work extraordinarily well. But bootstrap
methods do not always work well, and choosing among alternative
ones is often not easy.
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I It is well-known that the bootstrap, when correctly implemented, can
be an important device to compute critical values or p-values of a
statistical test in samples of �nite size.

I The bootstrap may be used either to estimate quantiles of an
unknown limiting distribution...

I ... or to deliver �nite sample re�nements/improved approximations
to statistical quantities of interest ...

I ... or to estimate quantities that might be hard to quantify (eg the
standard error of the sample median)

I Widely applied in statistics and econometrics, perhaps less so in time
series econometrics.
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I Leading applications in time series econometrics include:

I Unit root and co-integration testing
I GARCH volatility modeling
I Predictive regressions
I Extreme events/inference without moments
I Bubble modeling and testing
I Non causal models
I Double AR models
I Improved estimation of VaR models
I Point process models and extreme returns
I Realised volatility
I Fractionally integrated models

I Still, compared to other areas, the bootstrap is arguably under used
in time series econometrics and empirical �nance. Why?
I computational time?
I invalidity?
I di�culty in validly implementing?
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I In most of these applications, the �standard� (nonparametric)
bootstrap (based on i.i.d. resampling) does not work, for several
reasons, possibly including:

I lack of moments
I lack of level stationarity
I non-stationary stochastic volatility
I the presence of nuisance parameters the bootstrap does not replicate

I These features can lead to random limit bootstrap (conditional)
measures

I This does not mean that the bootstrap does not work in general ...
rather that (asymptotic) validity requires that the bootstrap is
correctly implemented.
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Examples of failure of the standard bootstrap in time series:

I inference in the presence of unit roots and common stochastic
trends/factors

I inference in predictive regressions with strongly persistent predictors

I regression with persistent stochastic volatility, including IGARCH

I inference in GARCH processes when a parameter is on the boundary
of the parameter space

I inference in causal/non-causal autoregessions with in�nite variance
innovations
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The Basics of Bootstrap Hypothesis Testing

I Suppose that τ̂ is the outcome of a test statistic, τ . If we knew the
(exact) cumulative distribution function (CDF) of τ under the null
hypothesis, say F (τ), we would reject the null hypothesis whenever τ̂
is abnormal in some sense. For a test that rejects in the upper tail of
the distribution, we might choose to calculate a critical value at level
α, say cα, as de�ned by the equation, 1− F (cα) = α.

I Then we would reject the null whenever τ̂ > cα. For example, when
F (τ) is the χ2(1) distribution and α = 0.05, cα = 3.84.

I An alternative approach, is to calculate the p-value, or marginal
signi�cance level, p(τ̂) = 1− F (τ̂) and reject whenever p(τ̂) < α.

I In most cases of interest, however, we do not know F (τ).
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I Until recently, the usual approach in such cases has been to replace
it by an approximate CDF, say F∞(τ), based on asymptotic theory.
This approach works well when F∞(τ) is a good approximation to
F (τ), but that is by no means always true.

I The bootstrap provides another way to approximate F (τ), which
may provide a better approximation. It can be used even when τ is
complicated to compute and di�cult to analyse theoretically. The
asymptotic distribution of τ need not even be known.

I To perform a bootstrap test, we generate B bootstrap samples that
satisfy the null. A bootstrap sample is a simulated data set. The
procedure for generating the bootstrap samples, which always
involves a random number generator, is called a bootstrap data
generating process, or bootstrap DGP
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I For each of the j = 1, ..., B bootstrap samples, compute a bootstrap
statistic, say τ∗j , usually by the same procedure used to calculate τ̂ .
The bootstrap p-value is then

p̂∗(τ̂) =
1

B

B∑
j=1

I(τ∗j > τ̂)

where I(·) is the indicator function, equal to 1 (0) when its
argument is true (false).

I This can also be written as p̂∗(τ̂) = 1− F̂ ∗(τ̂) where F̂ ∗(τ) is the
empirical distribution function [EDF] of the τ∗j . As B →∞, F̂ ∗(τ̂)
converges to the true (common) CDF of the τ∗j , F

∗(τ).
I The bootstrap p-value looks just like the true p-value, but with the

EDF of the bootstrap distribution, F̂ ∗(τ̂), replacing the unknown
CDF F (τ̂).

I From this, it is clear that bootstrap tests will generally not be exact.
However, most of the problems with bootstrap tests arise not
because F̂ ∗(τ) is only an estimate of F ∗(τ) but, as alluded to
before, because F ∗(τ) may not be a good approximation to F (τ).
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I There is an important special case in which bootstrap tests are
exact. For this result to hold, we need two conditions:

1. The test statistic τ is pivotal, which means that its (exact)
distribution does not depend on any unknown parameters.

2. The number of bootstrap samples B is such that α(B + 1) is an
integer, where α is the level of the test.

I In such cases a bootstrap test is also called a Monte Carlo test.

I The classic one-sample t-test, for example, satis�es the �rst
condition when the data are independent draws from a population
which is N(µ, σ2).

I The second condition is why you often see choices like B = 999.
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I Most test statistics we encounter in �nancial econometrics are not
pivotal. Nevertheless, provided they are properly implemented,
bootstrap tests will often work better than asymptotic tests. For
statistics with pivotal limiting null distributions one can in certain
circumstances show that bootstrap methods can deliver a re�nement

to the asymptotic approximation (this is a theoretical device to show
that it provides a better approximation to the exact distribution of
the statistic).

I For the bootstrap to be asymptotically valid, we need F ∗(τ) and
F (τ) to coincide to �rst order in large samples. Notice the choice of
B has no bearing on this; it is a property that needs to hold for each
bootstrap statistic. Where F (τ) is not asymptotically pivotal the
bootstrap can still be asymptotically valid though re�nements will
not be possible, unless a double bootstrap method is used, in which
case it is possible under certain circumstances.
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Some Popular Bootstrap Resampling Methods

I What determines how reliably a bootstrap test performs is how well
the bootstrap DGP mimics the features of the true DGP that matter
for the distribution of the test statistic. The same thing can also be
said for bootstrap con�dence intervals and bootstrap standard errors
(not discussed in this presentation).

I For non-dependent data we will �rst very brie�y review the (standard
i.i.d. or) nonparametric bootstrap, the parametric bootstrap, the
pairs bootstrap, the residual bootstrap, and the wild bootstrap.

I Then for dependent data additionally the sieve bootstrap (an
extension of the residual bootstrap), recursive bootstrap, and the
block bootstrap. There are lots of other important bootstraps
around, but we cannot cover them all!

I Also, we will consider the issue of whether to use restricted or
unrestricted parameter estimates in constructing the bootstrap data.
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Nonparametric (i.i.d.) and Parametric Bootstraps

I The nonparametric bootstrap samples T points from the original
data sample, denoted {y1, ..., yT }, with replacement. The selected
data points are chosen as random and independent draws from a
given distribution, usually (though not necessarily) assigning equal
probability to each data point; ie draws from a uniform distribution
over {1, ..., T}. The statistic of interest can then be calculated from
the bootstrap sample. If this is done B times we can obtain the EDF
of the bootstrap statistic.

I For hypothesis testing, consider again the one-sample t-test where
the data are i.i.d. draws from N(µ, σ2). Suppose we wish to test the
null hypothesis that the population mean is some value µ0. The
t-statistic is given by:

t =
ȳ − µ0
σ̂/
√
T

where ȳ and σ̂2 are the sample mean and sample variance of the
original sample, respectively.
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I There are two ways to i.i.d. bootstrap this hypothesis test.

1. Calculate the i.i.d. bootstrap sample, as above, denoted {y∗1 , ..., y∗T }.
Calculate the bootstrap t-statistic t∗ = (ȳ∗ − ȳ)/(σ̂∗/

√
T ). Repeat

this B times to form the estimated EDF. Notice we centre t∗ on ȳ
because that is the �true value� in the bootstrap universe.

2. Create the i.i.d. bootstrap sample from the data which are centred
under the restriction of the null hypothesis: {y1 − µ0, ..., yT − µ0}.
Then calculate the bootstrap t-statistic t∗ = ȳ∗/(σ̂∗/

√
T ). Repeat

this B times to form the estimated EDF.

I Both are easy enough to calculate, but in more complicated settings
it is often preferable to use a restricted approach where we impose
the null hypothesis on the bootstrap DGP.
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I Notice that the original data points will most likely not appear with
equal frequency, taken across the B bootstrap samples. If we want
this to be the case and here the permutation bootstrap can be used.

I The bootstrap also allows us to simulate other quantities. For
example we might be interested in the sample median, ỹ say, not the
sample mean, and want an estimate of the standard error of the
sample median. This quantity depends on the underlying
distribution, but can be easily estimated using the i.i.d. bootstrap as
(the square root of)

B−1
B∑
j=1

(ỹ∗j − ỹ)2

where ỹ∗ is the sample median of the data generated in bootstrap
sample j, with the bootstrap data generated by scheme 1 above.
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I The standard t test which compares the t statistic given above to
critical values from the t distribution is an exact test of the null
hypothesis that the mean of the population is µ0. This result rests
on the assumption the data are (independent) draws from a Gaussian
population. If untrue, the t-test won't be correctly sized (it will reject
the null hypothesis either more often (giving a oversized test) or less
often (undersized test) than the speci�ed signi�cance level, α).

I The nonparametric bootstrap, however, does not assume the data
are Gaussian and will still deliver an exact test (under the conditions
stated earlier). It is therefore considerably more robust.

I If we were sure the data were Gaussian we could also use the
parametric bootstrap. Here the bootstrap data, y∗t , t = 1, ..., T , are
generated as independent draws from a N(0, σ̂2) distribution and the
bootstrap t-statistic t∗ = ȳ∗/(σ̂∗/

√
T ) is calculated. Again done B

times to form the estimated EDF. Notice, that this is basically a
Monte Carlo simulation of the distribution of the original statistic.
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Regression-based Bootstraps

I Consider the usual Classic Linear Regression Model (CLRM),

yt = Xtβ + ut, E(ut|Xt) = 0, E(us, ut) = 0, ∀s 6= t (1)

where Xt is a k-vector of (exogenous) regressors and β is a k-vector.

I Assume, for the present, that the ut are IID with variance σ2.

I The (�xed regressor) residual bootstrap resamples from the residuals
(usually Ordinary Least Squares, OLS) from estimating (1). The
bootstrap DGP is y∗t = Xtβ̂+ u∗t , where u

∗
t are i.i.d. resampled from

the (often rescaled and centred) OLS residuals, ût.

I A (�xed regressor) parametric residual bootstrap draws the u∗t as eg
NIID(0, s2), s2 the OLS variance estimate from (1).

I To perform hypothesis tests on the elements of β it is simplest to
use a restricted estimate of β that imposes the restriction(s)
imposed by the null hypothesis, β̃ say, in the bootstrap DGP.
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I The residual bootstrap imposes independence of the bootstrap
errors, u∗t , from the regressors. This of course implies (but is much
stronger than) the conditional mean restriction on the CLRM holds.

I The residual bootstrap is invalid if ut is not i.i.d. If the ut are
independent but possibly heteroskedastic then the (�xed regressor)
wild bootstrap of Wu (1986, AoS) can be validly used. Here the
bootstrap DGP is y∗t = Xtβ̂ + û∗t where û∗t = ût × wt, where the
wt's are a sequence of independent random variables with mean zero
and variance 1.

I Examples used for wt include NIID(0, 1), and independent draws
from the Rademacher distribution, which takes either the value 1 or
−1, each with probability 0.5.

I The choice of distribution for wt can be important for the �nite
sample accuracy of the bootstrap. It is less relevant in large samples
though in some cases further restrictions, such as symmetry, need to
be imposed for validity.
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wt's are a sequence of independent random variables with mean zero
and variance 1.

I Examples used for wt include NIID(0, 1), and independent draws
from the Rademacher distribution, which takes either the value 1 or
−1, each with probability 0.5.

I The choice of distribution for wt can be important for the �nite
sample accuracy of the bootstrap. It is less relevant in large samples
though in some cases further restrictions, such as symmetry, need to
be imposed for validity.

23 / 81



I Like the residual bootstrap, the wild bootstrap generates bootstrap
errors, û∗t , which are conditionally (on the regressor matrix X) mean
zero, and so the bootstrap pairs (y∗t ,Xt) satisfy a linear regression
with the �true� coe�cient β̂.

I But unlike the residual bootstrap, the conditional variance of û∗t
equals û2t ; ie the wild bootstrap errors will, on average, have about
the same variance as the ut - i.e. the wild bootstrap does not impose
independence between û∗t and the regressors.

I An interesting property of the wild bootstrap is that it annihilates
any (weak) correlations present in the data set(s) it is applied to,
because of the independence of the wt's. This can be either a
blessing or a curse as we will see.

I A dependent wild bootstrap has recently been proposed by Shao
(2010, JASA).
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I The wild bootstrap also imposes the conditional mean restriction of
the CLRM. An alternative, which allows for some forms of
heteroskedasticity, is the pairs bootstrap of Freedman (1981, AoS).
Here we re-sample the data and not the residuals. Using the
nonparametric bootstrap we re-sample the pairs (y∗t ,X

∗
t ) from

{(yt,Xt)}Tt=1. Generally inaccurate as does not condition on X and
so it does not impose the conditional mean assumption, which
obviously holds on the original data.
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Bootstrap Methods For Dependent Data

I All of the bootstrap DGPs that have been discussed so far treat the
error terms (or the data, in the case of the pairs bootstrap) as
independent. When that is not the case, these methods are not
appropriate. In particular, resampling (whether of residuals or data)
breaks up whatever dependence there may be and is therefore
unsuitable for use when there is dependence.

I Numerous bootstrap DGPs for dependent data have been proposed.
The two most popular approaches are the sieve bootstrap and the
block bootstrap. The former attempts to model the dependence
using a parametric model. The latter resamples blocks of consecutive
observations instead of individual observations. They can be
appropriately combined with the methods discussed before such as
the wild bootstrap.

26 / 81



Bootstrap Methods For Dependent Data

I All of the bootstrap DGPs that have been discussed so far treat the
error terms (or the data, in the case of the pairs bootstrap) as
independent. When that is not the case, these methods are not
appropriate. In particular, resampling (whether of residuals or data)
breaks up whatever dependence there may be and is therefore
unsuitable for use when there is dependence.

I Numerous bootstrap DGPs for dependent data have been proposed.
The two most popular approaches are the sieve bootstrap and the
block bootstrap. The former attempts to model the dependence
using a parametric model. The latter resamples blocks of consecutive
observations instead of individual observations. They can be
appropriately combined with the methods discussed before such as
the wild bootstrap.

26 / 81



The Sieve Bootstrap

I Suppose that the error terms ut in (1) follow a weakly stationary
process with (conditionally) homoskedastic innovations. The sieve
bootstrap attempts to approximate this process, generally by using
an AR(p) process with p chosen either by some sort of model
selection criterion (eg BIC) or by sequential testing. Technically, the
sieve bootstrap imposes a rate condition on p so that it increases
with the sample size, T . If p is �xed (but not necessarily known), the
sieve bootstrap is sometimes called a recoloured bootstrap.

I The �rst step is to estimate the model (1), preferably imposing the
null hypothesis if one is to be tested, to obtain residuals ût. The
next step is to estimate the AR(p) model

ût =

p∑
i=1

φiût−i + et (2)

make some choice of p, then estimate the AR by either OLS or
Yule-Walker (the latter ensures the �tted model satis�es stationarity
conditions).
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φiût−i + et (2)

make some choice of p, then estimate the AR by either OLS or
Yule-Walker (the latter ensures the �tted model satis�es stationarity
conditions).

27 / 81



I The bootstrap errors are then generated recursively by the equation

u∗t =

p∑
i=1

φ̂iu
∗
t−i + e∗t , (3)

where the φ̂i are the estimated parameters from (2), and the e∗t are
resampled from the (possibly rescaled) associated residuals, say êt.
This could be eg i.i.d. or wild resampling.

I Usually initialised at zero. With i.i.d. resampling the recursion can be
started (possibly well) before t = 1 to allow the DGP to �warm in�.

I The �nal step is to generate the bootstrap data by the equation

y∗t = Xtβ̂ + u∗t

The regression parameters β could be estimated by OLS or a more
e�cient method such as GLS, as long as the method is consistent
under the null hypothesis.
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I Goncalves and Killian (2004, Jnl Econometrics) look at the large
sample behaviour of bootstrap tests and con�dence intervals based
on the AR parameters when p is known and �nite. G&K (2007,
Econometric Reviews) extend this to the case where p is a function
of T , which allows ut to follow a very general linear process,
including stationary and invertible ARMA(p, q) processes.

I G & K demonstrate that if the e∗t in (3) are obtained by i.i.d.
resampling, then the sieve bootstrap is invalid when ut is
conditionally heteroskedastic (eg GARCH), because even the large
sample distributions of estimators of the AR coe�cients depend on
nuisance parameters arising from the conditional heteroskedasticity,
which the bootstrap does not replicate. BIG problem for eg �nance
applications then!
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I Same is true when bootstrapping fractional integration tests - see eg
Cavaliere, Nielsen and Taylor (2017, Jnl Econometrics).

I G & K demostrate the (asymptotic) validity of the recursive-design

wild bootstrap (as outlined above with wild bootstrap resampling),
as well as for a related �xed-design wild bootstrap, and for the pairs

bootstrap. Cavaliere, Nielsen and Taylor also use a recursive-design
wild bootstrap to solve the problem in the fractional case.

I These methods will then, not surprisingly, be very useful for testing
applications in macroeconometrics and �nancial time series
econometrics, as we will shortly see with some leading examples.
Each is designed to highlight particular problems with obtaining a
valid bootstrap bootstrap implementation and how these are solved.
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valid bootstrap bootstrap implementation and how these are solved.
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I In the methods just given, if we use the wild bootstrap to generate
the e∗t , then this is the recursive-design wild bootstrap. For the
�xed-design wild bootstrap the errors are instead generated by the
equation (same e∗t 's are used)

u∗t =

p∑
i=1

φ̂iut−i + e∗t

I In the pairs bootstrap, at each point in time we sample the tuples
(yt, yt−1, ...yt−p) to give (y∗t , y

∗
t−1, ...y

∗
t−p), and then stack the T

such draws together.

I G& K show that the recursive-design method requires slightly
stronger regularity conditions for validity than the other two
methods, but displays the best �nite sample accuracy of the three.
Because of this, it is much more widely used than the other two.
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I The bootstrap can also be used to estimate (and, hence, correct for)
the �nite sample bias in estimating the AR slope coe�cients. Can be
done with either the bootstrap-after-bootstrap or the double
bootstrap. Put simply, one uses a second bootstrap to estimate the
bias in estimation in the bootstrap DGP where the AR parameters
are `known'. Then apply this estimated discrepancy as a bias
correction to the original estimates.

I The sieve bootstrap can also be validly implemented in cases where
ut is a stationary and invertible fractionally integrated process - see
Poskitt (2008, Journal of Time Series Analysis). Can also be
implemented for non-stationary fractional models - see Kapetanios,
Papailias and Taylor (2019, JTSA).
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The Block Bootstrap

I Block bootstrap methods, originally proposed by Künsch (1989,
AoS), divide the quantities that are being resampled, which might be
either rescaled residuals or [y,X] pairs, into blocks of m consecutive
observations. The blocks, which may be either overlapping or
nonoverlapping and may be either �xed or variable in length, are
then resampled. It appears that the best approach is to use
overlapping blocks of �xed length; see Lahiri (1999, AoS). This is
called the moving-block bootstrap.

I In theory block bootstrap methods can handle weak dependence and
conditional heteroskedasticity in the model but their �nite-sample
performance is often not very good. Finite sample performance also
very strongly dependent on the choice of block length. Moreover,
since they do not impose the null hypothesis, any test statistic must
be adjusted so that it is testing a hypothesis that is true for the
bootstrap DGP.
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Moving on to ...

1. Introduction

2. The Basics of Bootstrap Hypothesis Testing

3. Some Popular Bootstrap Resampling Methods

4. Application 1: Unit Root Testing

5. Application 2: Testing for Bubbles

6. Application 3: Testing for Predictability of Returns

7. Conclusions



Bootstrap Unit Root Tests

I The sieve approach outlined above has a long tradition in
econometrics, and no more so than in unit root and co-integration
testing. Sieve approximations are valid for any stationary and
invertible linear MA(∞) (linear process). They avoid the need for
complicated non-linear estimation of models with MA components.

I Sieve methods were originally used in the context of the augmented
Dickey Fuller [ADF] tests by Saïd and Dickey (1984, Biometrika).
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I Consider the usual ADF model (dt is some deterministic component)

∆yt = dt + ρyt−1 +

k∑
j=1

φj∆yt−j + ut. (4)

I S&D test the unit root null hypothesis, H0 : ρ = 0, against the
(trend) stationary alternative, H0 : ρ < 0.

I S&D show that if 1/k + k3/T → 0 as T →∞ then the ADF
regression t-statistic

tDF = ρ̂/s.e.(ρ̂)

has the usual ADF limiting null distribution (originally derived for ut
i.i.d.) if ut is a stationary and invertible ARMA(p, q) driven by an
i.i.d. innovation.
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I Chang and Park (2002, Econometric Reviews) generalise Saïd and
Dickey (1984) to allow ut to follow a general linear process driven by
conditionally heteroskedastic innovations. Interestingly, and unlike
the stationary AR case in G & K, the limiting distribution of the
ADF statistic does not depend on any nuisance parameters arising
from the conditional heteroskedasticity.

I The ADF limiting null distribution can however be a very poor
approximation to the �nite sample null distribution of the sieve-based
ADF statistic. Call the bootstrap!
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I Basawa et al. (1991, AoS) illustrates the potential for danger of not
imposing the null when computing a bootstrap DGP. Using a
recursive bootstrap, and looking at the t-statistic whose numerator is
the di�erence between the OLS estimator ρ̂ from a DF (k = 0)
regression and from a bootstrap AR(1) generated recursively as
y∗t = ρ̂y∗t−1 + u∗t they show that the bootstrap statistic does not
converge to the DF null distribution and, as a result, conclude that
bootstrap unit root testing is infeasible. WRONG!

I Ferretti and Romo (1996, Biometrika) for the AR(1) case, Park
(2003, Econometrica) for the AR(p) case, and Chang and Park
(2003, JTSA) for the AR(∞) (sieve) case show how to develop valid
bootstrap implementations of the ADF tests. Each use an i.i.d.
residual bootstrap approach.
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Chang and Park (2003) Sieve Bootstrap ADF Test

I Step 1: Calculate the ADF statistic, tDF , from (4) satisfying S&D's
rate condition on k.

I Step 2: Imposing H0, de�ne et = ∆yt. Then estimate (OLS or YW)
the sieve regression, et = dt +

∑k
j=1 φjet−j + uk,t, to obtain the

restricted estimates φ̃j , j = 1, ..., k, and the residuals, ũt.

I Step 3: i.i.d. resample from the (centred) residuals, ũt − ũ, to get
bootstrap residuals, u∗t .

I Step 4: Recursively generate e∗t =
∑k

j=1 φ̃je
∗
t−j + u∗t , setting

pre-sample values to eg zero.

I Step 5: Impose H0 on the bootstrap DGP by cumulating the e∗t 's; ie
y∗t = y∗0 +

∑t
j=1 e

∗
j , with y

∗
0 set to eg zero.

I Step 6: Calculate the bootstrap analogue of tDF in (4) applied to y∗t .

I Step 7: Perform Steps 2-6 B times to form the estimated bootstrap
EDF. Obtain bootstrap p-value.
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bootstrap residuals, u∗t .

I Step 4: Recursively generate e∗t =
∑k

j=1 φ̃je
∗
t−j + u∗t , setting

pre-sample values to eg zero.

I Step 5: Impose H0 on the bootstrap DGP by cumulating the e∗t 's; ie
y∗t = y∗0 +

∑t
j=1 e

∗
j , with y

∗
0 set to eg zero.

I Step 6: Calculate the bootstrap analogue of tDF in (4) applied to y∗t .

I Step 7: Perform Steps 2-6 B times to form the estimated bootstrap
EDF. Obtain bootstrap p-value.

39 / 81



Chang and Park (2003) Sieve Bootstrap ADF Test

I Step 1: Calculate the ADF statistic, tDF , from (4) satisfying S&D's
rate condition on k.

I Step 2: Imposing H0, de�ne et = ∆yt. Then estimate (OLS or YW)
the sieve regression, et = dt +

∑k
j=1 φjet−j + uk,t, to obtain the

restricted estimates φ̃j , j = 1, ..., k, and the residuals, ũt.
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I C&P Demonstrate the asymptotic validity of their sieve bootstrap
unit root test. However, they impose that the shocks, ut are i.i.d.
Their bootstrap is still valid with conditionally heteroskedastic
shocks, but won't mimic such e�ects in the bootstrap data.

I Their bootstrap is not valid if there is unconditional
heteroskedasticity (non-stationary volatility).

I Although C&P argue that their sieve bootstrap loses no power
relative to the test based on asymptotic critical values, their own
simulations show large power losses relative to the standard ADF test
under H1. This occurs because Step 2 imposes H0 on the sieve
stage. Under H1, et is non-invertible, violating the usual conditions
for sieve validity. In practice in �tting the sieve we will �t many, many
lags! Imposing H0 on estimation is not always the best thing to do.

I Cavaliere and Taylor (2008, Econometric Theory) address these
problems proposing wild bootstrap ADF tests.
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Cavaliere and Taylor (2008) Wild Bootstrap ADF Test

I Step 1: Calculate the ADF statistic, tDF , from (4).

I Step 2: (Optional): Estimate (4) to obtain the estimates φ̂j ,
j = 1, ..., k.

I Step 3: Wild bootstrap resample from the �rst di�erences, et = ∆yt,
to get bootstrap residuals, u∗t = et × wt.

I Step 4: (Optional) Recursively generate e∗t =
∑k

j=1 φ̂je
∗
t−j + u∗t ,

setting pre-sample values to eg zero.

I Step 5: Impose H0 on the bootstrap DGP by cumulating the u∗t 's; ie
y∗t = y∗0 +

∑t
j=1 u

∗
j , with eg y∗0 set to zero [replace u∗j by e∗j if Step

4 is performed].

I Step 6: Calculate the wild bootstrap analogue of tDF in (4) applied
to y∗t .

I Step 7: Perform Steps 2-6 B times to form the estimated bootstrap
EDF. Obtain bootstrap p-value.
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I Step 7: Perform Steps 2-6 B times to form the estimated bootstrap
EDF. Obtain bootstrap p-value.
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I Because the wild bootstrap annihilates weak correlations, there's no
need to perform the sieve element for asymptotic validity, unlike with
C&P's bootstrap. But including a sieve stage can improve �nite
sample size. Indeed k can be set to zero in the bootstrap version of
(4) in Step 6 if the sieve stage is omitted.

I C&T's algorithm does not actually impose H0 on the (optional)
sieve (again because the wild bootsrap kills serial correlation) and, as
a result, C&T's wild bootstrap ADF tests avoid the power losses
seen with C&P's tests.

I C&T show that the wild bootstrap t∗DF statistic has the same �rst
order limiting null distribution as the limiting null distribution of tDF
under null, local and �xed alternatives. Hence, behaves like an
infeasible size-corrected ADF test.

I C&T in various papers (eg 2019 Econometric Theory, Econometric
Reviews, 2009) show that the bootstrap ADF tests perform very well
in the presence of both conditional heteroskedasticity and
unconditional heteroskedasticity of many forms (eg volatility breaks,
trending volatility, IGARCH, AR-SV, various GARCH -type models).
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I Cavaliere and Taylor (2008, Jnl Econometrics) propose an alternative
parametric bootstrap approach based on a consistent estimate of the
volatility pro�le of the series. Does not perform as well as the wild
bootstrap in �nite samples.

I Cavaliere, Rahbek and Taylor (2012, Econometrica) develop
bootstrap implementations of Johansen's sequential procedure for
determining the co-integration rank of a system of variables. This
work again shows the importance of imposing the co-integration rank
postulated by the null hypothesis on the bootstrap DGP at each
stage of the sequential procedure. They show that not doing so, as
in the bootstrap procedure developed in Swensen (2009,
Econometrica), leads to an inconsistent bootstrap procedure.
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Moving on to ...

1. Introduction

2. The Basics of Bootstrap Hypothesis Testing

3. Some Popular Bootstrap Resampling Methods

4. Application 1: Unit Root Testing

5. Application 2: Testing for Bubbles

6. Application 3: Testing for Predictability of Returns

7. Conclusions



Testing for Bubbles

I Phillips et al. (2011, IER) (PWY), focus on testing the null
hypothesis of a �xed unit root across the whole sample against the
alternative of explosive autoregressive behaviour in some subset of
the sample using the supremum of a set of forward recursive (ie
sequences of sub-samples) right-tailed (A)DF tests applied to the
price and dividend series. If the test �nds explosive autoregressive
behaviour for the prices but not for the dividends, this indicates that
an explosive rational bubble exists.

I PWY implement their test based on �nite sample Monte Carlo
critical values assuming Gaussian IID innovations. Harvey,
Leybourne, Sollis and Taylor (2016, Jnl Empirical Finance) [HLST]
propose wild bootstrap implementations of the PWY test which
allow for nonstationary volatility in the innovations.
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Bubble DGP

I In its simplest form, the bubble DGP of PWY is of the form:

yt = µ+ ut (5)

ut =


ut−1 + εt, t = 2, ..., bτ1,0T c,
(1 + δ1,T )ut−1 + εt, t = bτ1,0T c+ 1, ..., bτ2,0T c,
ut−1 + εt, t = bτ2,0T c+ 1, ..., T

where δ1,T ≥ 0.

I When δ1,T > 0, yt follows a unit root up to time bτ1,0T c, after
which it displays explosive AR behaviour over
t = bτ1,0T c+ 1, ..., bτ2,0T c. When applied to asset prices, and
assuming unit root behaviour in the corresponding dividend series,
this can be interpreted as a bubble regime.

I At the end of the bubble period, yt reverts to unit root dynamics.
The DGP admits a bubble regime continuing to the end of the
sample period if τ2,0 = 1.
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I The null hypothesis, H0, is that no bubble is present in the series
and yt follows a unit root process throughout the sample period, i.e.
H0 : δ1,T = 0. The alternative hypothesis is given by H1 : δ1,T > 0,
and corresponds to the case where a bubble is present in the series,
which either runs to the end of the sample (if τ2,0 = 1), or
terminates in-sample.

I To test H0 against H1, PWY propose a test based on the supremum
of recursive right-tailed (A)DF tests.
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I For serially uncorrelated εt, the PWY statistic is

PWY = sup
τ∈[τ0,1]

DF τ

where DF τ is the standard DF statistic, ie the t-ratio for φ̂τ = 0 in
the �tted OLS regression

∆yt = α̂+ φ̂τyt−1 + ε̂t (6)

calculated over the sub-sample t = 1, ..., bτT c, i.e.

DF τ =
φ̂τ√

σ̂2τ/
∑bτT c

t=2 (yt−1 − ȳτ )2

where ȳτ = (bτT c − 1)−1
∑bτT c

t=2 yt−1 and

σ̂2τ = (bτT c − 3)−1
∑bτT c

t=2 ε̂2t .
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I The PWY statistic is therefore the supremum of a sequence of
forward recursive DF statistics with minimum sample length bτ0T c.

I PWY assume that εt in (5) is i.i.d. or an AR(p) driven by i.i.d.
innovations.

I Many studies �nd evidence of structural breaks in the unconditional
variance of asset returns, often with the breaks linked to major
�nancial and macroeconomic crises such as the 1970s oil price
shocks, the East Asian currency crisis in the late-1990s, the dot-com
crash in 2001 and the global �nancial crisis in 2008-2009.

I Apparent volatility changes in asset returns could be induced by the
presence of a speculative bubble, and the converse could also be
true. It is therefore critically important to have available a reliable
method for detecting an explosive period in a series that is robust to
the potential presence of nonstationary volatility, particularly if the
evidence is to be used to inform future monetary policy.
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I HLST show that nonstationary volatility leads to a non-pivotal null
limiting distribution for the PWY test. Simulations for various
common patterns of nonstationary volatility show that the PWY test
can be badly over-sized.

I HLST propose a wild bootstrap, applied to the �rst di�erences of the
data to replicate in the bootstrap DGP the pattern of nonstationary
volatility present in the original innovations.
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Wild Bootstrap PWY Algorithm

I Step 1. Generate T bootstrap innovations ε∗t , as follows: ε
∗
1 = 0,

ε∗t = wt∆yt, t = 2, ..., T , where {wt}Tt=2 is a NIID(0, 1) sequence.

I Step 2. Construct the bootstrap sample as the partial sum

y∗t =

t∑
j=1

ε∗j , t = 1, ..., T.

I Step 3. Compute the bootstrap test statistic

PWY ∗ = sup
τ∈[τ0,1]

DF ∗τ

where DF ∗τ is the t-ratio on φ̂∗τ in the �tted OLS regression

∆y∗t = α̂∗ + φ̂∗τy
∗
t−1 + ε̂∗t

calculated over the sub-sample period t = 1, ..., bτT c, i.e.
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Wild Bootstrap PWY Algorithm

DF ∗τ =
φ̂∗τ√

σ̂∗2τ /
∑bτT c

t=2

(
y∗t−1 − ȳ∗τ

)2
where ȳ∗τ = (bτT c − 1)−1

∑bτT c
t=2 y∗t−1 and

σ̂∗2τ = (bτT c − 3)−1
∑bτT c

t=2 ε̂∗2t .

I Step 4. Bootstrap p-values can then be computed in the usual way

by repeating Steps 1-3 B times.
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I HLST show that the wild bootstrap PWY statistic shares the same
�rst-order (non-pivotal) limiting null distribution as the original
PWY statistic within a broad class of nonstationary volatility
processes (essentially the same as C&T consider in the context of
conventional unit root testing).

I HLST's bootstrap PWY tests achieve the asymptotic power function
of (infeasibly) size-corrected variant of the original PWY statistic,
under locally explosive alternatives.

I Under �xed magnitude explosive alternatives the booststrap PWY
statistic diverges with the sample size, T , but at a slower rate that
does the original PWY statistic and hence the bootstrap PWY is still
consistent.

I It is often believed that a bootstrap statistic must replicate the
limiting null distribution of the statistic under both the null and
alternative to be valid and consistent, but this is not the case!

I The same phenomenon occurs with the wild bootstrap KPSS tests
proposed in Cavaliere and Taylor (2005, Econometric Theory).
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Is there any Predictability in the Equity Premium?
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Dividend yield: Forward Recursive IV regression estimates and pointwise
CIs, 1950-2017 (Goyal-Welch 2008 updated monthly data).
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... what about the persistence of the predictor?

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
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The equity premium looks very mean reverting etc (almost noise), but the
dividend yield looks strongly persistent (usual ADF test has p-value of
0.41).
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The Basic Predictive Regression Set-up

Consider the predictive regression

yt = α+ β xt−1 + ut (7)

where

(xt − µx) = ρ(xt−1 − µx) + vt, (8)

with (ut, vt)
′ ∼ iid(0,Σ) where

Σ = E

((
ut
vt

)(
ut vt

))
=

(
σ2u σuv
σuv σ2v

)
.

Null hypothesis: xt−1 does not predict yt, i.e.

H0 : β = 0 .

Yet, even in this simplest setup...
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Endogeneity and (high) Persistence

Should

I the shocks ut and vt correlate (so that φ = σuv/σuσv 6= 0; for the
EP-DY data above this correlation is estimated to be φ̂ = −0.98),
and

I the regressor xt be autocorrelated,

one speaks of endogeneity (albeit a bit of a misnomer).

Under endogeneity and high persistence (near integration, ρ = 1− c/T),

I the OLS estimator is 2nd order biased and

I the t-statistic has a non-normal limiting distribution.

See Cavanagh, Elliott and Stock (1995, Econometric Theory), Stambaugh
(1999, Jnl Fin Economics), Campbell and Yogo (2006, Jnl Fin
Economics) etc.

No problem when regressors are weakly persistent.
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OLS t-statistics, T = 305
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More trouble with variance breaks - volatility of both
shocks 3 times higher in the �rst 20% of the sample ,
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I In the near-unit root case, the limiting null distributions of the
standard t-statistic for testing β = 0 in (7) depends on both φ and c,
whenever neither is zero.

I If ρ were known, one could employ GLS estimation. For unknown ρ,
there are a number of `solutions' proposed in the literature:
I Bonferroni - Cavanagh et al. (1995), Campbell and Yogo (2006)
I Restricted log-likelihood - Jansson and Moreira (2006, Econometrica)
I Almost optimal tests - Elliott et al. (2015, Econometrica)
I Generic IV estimation - Breitung and Demetrescu (2015, Jnl

Econometrics)
I Extended Instrumental Variables [IVX] method of Kostakis et al.

(2015, Review of Financial Studies) [KMS]

I The IVX method has become very popular. It delivers tests with
standard pivotal limiting null distributions. Unlike many of the other
methods, this holds regardless of whether the predictor is weakly or
strongly persistent. Also implementable with multiple predictors.

I However, the asymptotic approximation can be very poor. So
bootstrap implementations seem worth exploring.
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bootstrap implementations seem worth exploring.
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The IVX Approach

I KMS develop asymptotically valid methods of estimation and
inference in the context of (7)-(8) based on the use of the mildly
integrated IVX instrument

zI,t =

t−1∑
j=0

%j∆xt−j = (1− %L)−1+ ∆xt

where % = 1− aT−γ with γ ∈ (0, 1) and a ≥ 0.

I KMS develop IV-based tests using this instrument for xt. They allow
ut to follow a serially uncorrelated GARCH(p, q) process and vt to
be a linear process driven by general (conditionally heteroskedastic)
martingale di�erence [MD] innovations.
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The IVX trick applied to a random walk - using a = 1,
γ = 0.95 as in KMS
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The IVX Test of KMS

The IVX-based t-ratio of KMS for testing H0 : β = 0 in (7) instruments
the endogenous predictor xt−1 with the IVX instrument zI,t−1, and is
given by

tzx =
β̂zx

s.e.(β̂zx)
(9)

where β̂zx is the IVX estimator of β,

β̂zx =

∑T
t=1 zt−1 (yt − ȳ)∑T

t=1 zt−1 (xt−1 − x̄−1)
(10)

with ȳ = T−1
∑T

t=1 yt and x̄−1 = T−1
∑T

t=1 xt−1, and s.e.(β̂zx) is its
standard error (White standard error if one allows for conditional
heteroskedasticity) formed from the OLS residuals from estimating (7).
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Bootstrap IVX Tests

I Demetrescu, Georgiev, Rodrigues and Taylor (2022, Jnl
Econometrics) [DGRT] explore two bootstrap resampling schemes.
The �rst, a residual wild bootstrap [RWB]. The second is a �xed
regressor wild bootstrap [FRWB]. DGRT show that both are
�rst-order asymptotically valid.

I DGRT show that these allow one to replace the GARCH(1, 1)
assumption on ut with a much more general bivariate MD
assumption on the two innovations. Moreover, non-stationary
volatility in each innovation can be allowed, and the endogeneity
correlation, φ, can be allowed to vary over time.

I DGRT show that these bootstraps also allow for valid subsample
implementation of the IVX tests of KMS (pockets of predictability).
These have non-pivotal limiting null distributions which depend in a
complex way on nuisance parameters arising from both the serial
correlation and heteroskedastic aspects of the DGP, and constructing
an asymptotic test is not even feasible.
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A Residual Wild Bootstrap

1. Fit the predictive regression (7) to the sample data (yt, xt−1)
′ to

obtain the residuals ût, t = 1, ..., T .

2. Fit by OLS an autoregression of order p+ 1 to xt; viz,

xt = m̂+

p+1∑
j=1

âjxt−j + v̂t

and compute the OLS residuals v̂t, t = p+ 1, . . . , T . Set v̂t = 0 for
t = 1, . . . , p.

3. Generate bootstrap innovations (u∗t , v
∗
t )
′ = (wtût, wtv̂t)

′,
t = 1 . . . , T , where wt, t = 1, ..., T , is a scalar i.i.d.(0, 1) sequence
with E(w4

t ) <∞, which is independent of the sample data.
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4 De�ne the bootstrap data (y∗t , x
∗
t−1)

′ where y∗t = u∗t (so that the
null hypothesis is imposed on the bootstrap y∗t ) and where x∗t is
generated according to the recursion

x∗t =

p+1∑
j=1

âjx
∗
t−j + v∗t , t = 1, ..., T

with initial conditions x∗0 = . . . = x∗−p = 0. Create the associated
bootstrap IVX instrument, z∗t , as:

z∗0 = 0 and z∗t =

t−1∑
j=0

%j∆x∗t−j , t = 1, . . . , T,

where % is the same value as used in constructing the original IVX
instrument, zt.

5 Using the bootstrap sample data,
(
y∗t , x

∗
t−1, z

∗
t−1
)′
, in place of the

original sample data, (yt, xt−1, zt−1)
′, construct the bootstrap

analogues of the IVX statistics.
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A Fixed-Regressor Wild Bootstrap

1. Construct the wild bootstrap innovations y∗t = ŷtwt, where
ŷt = yt − 1

T

∑T
t=1 yt are the demeaned sample observations on yt.

2. Using the bootstrap sample data
(
y∗t , xt−1, z

′
t−1
)′
, in place of the

original sample data
(
yt, xt−1, z

′
t−1
)′
, construct the bootstrap

analogues of the IVX statistics.
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Key Di�erences?

I A key di�erence between the RWB and FRWB surrounds the
generation of the bootstrap analogue data for xt and zt. While the
RWB rebuilds into the bootstrap data (an estimate of) the
correlation between the innovations ut and vt ( it is crucial in doing
so that the same Rt is used to multiply both ût and v̂t), the FRWB
does not. This is an important distinction because the �nite sample
behaviour of the IVX statistics is heavily dependent on the
correlation between ut and vt when xt is strongly persistent.

I A further di�erence is that because the RWB uses the bootstrap data
x∗t and z∗t , one is implicitly using an estimate of ρ. Under strong
persistence c, cannot be consistently estimated and so x∗t will not be
generated with the same local-to-unity parameter as xt. However,
the IVX statistics instrument xt−1 by zt−1, and their bootstrap
analogues instrument x∗t−1 by z∗t−1. But both zt and z

∗
t are, by

construction, mildly integrated processes, regardless of the value of c.
There is therefore no necessity for the estimate of c to be consistent.
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Monte Carlo Results from DGRT I

Case 1: Empirical Size: Scalar Predictor, IID errors

I DGP (7)-(8) with β = 0. Set α = µx = 0, w.n.l.o.g.

I ρ := 1− c/T with c ∈ {−0.5,−0.25, 0, 2.5, 5, 10, 25, ..., 250}
I (ut, vt)

′ is zero-mean IID bivariate Gaussian with covariance matrix

Σ :=

[
1 φ
φ 1

]
and φ = −0.95

I IVX with a = 1, γ = 0.95, and KMS's �nite-sample correction

I Report: t∗,RWB
zx and t∗,FRWB

zx (RWB and FRWB implementations of
tzx); t

EW
zx (asymptotic IVX test with conventional ses) and tzx

(asymptotic IVX test with White ses)

I T = 250, 10000 MC replications, 999 bootstrap replications.
Nominal 5% level. In Step 2 of RWB p chosen by BIC over the
search set p ∈ {0, ..., b4(T/100)0.25c}.
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Table 1: Size of Left-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.046 0.004 0.004 0.003

-2.5 0.045 0.000 0.000 0.001
0 0.041 0.001 0.001 0.001

2.5 0.062 0.005 0.005 0.005
5 0.068 0.010 0.011 0.010
10 0.064 0.019 0.019 0.018
25 0.057 0.029 0.030 0.028
50 0.056 0.034 0.036 0.035
75 0.056 0.037 0.038 0.037
100 0.054 0.038 0.040 0.038
125 0.054 0.039 0.042 0.041
150 0.055 0.043 0.046 0.042
200 0.054 0.046 0.048 0.045
250 0.054 0.048 0.051 0.048
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Table 2: Size of Right-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.046 0.074 0.080 0.073

-2.5 0.041 0.094 0.097 0.093
0 0.053 0.105 0.114 0.110

2.5 0.064 0.112 0.116 0.115
5 0.062 0.107 0.116 0.112
10 0.062 0.097 0.102 0.099
25 0.057 0.078 0.084 0.080
50 0.052 0.067 0.072 0.067
75 0.053 0.064 0.068 0.065
100 0.053 0.061 0.065 0.062
125 0.052 0.060 0.063 0.060
150 0.053 0.056 0.060 0.059
200 0.050 0.054 0.056 0.053
250 0.051 0.051 0.055 0.053
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Table 3: Size of Two-sided Tests

Gaussian IID innovations

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
-5 0.048 0.038 0.044 0.039

-2.5 0.038 0.040 0.048 0.044
0 0.047 0.051 0.057 0.053

2.5 0.053 0.058 0.062 0.060
5 0.054 0.058 0.063 0.060
10 0.055 0.060 0.066 0.060
25 0.056 0.056 0.060 0.058
50 0.051 0.051 0.054 0.052
75 0.049 0.047 0.052 0.049
100 0.049 0.048 0.052 0.050
125 0.050 0.049 0.053 0.051
150 0.051 0.049 0.054 0.052
200 0.050 0.048 0.054 0.050
250 0.049 0.048 0.053 0.050
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Monte Carlo Results from DGRT II

Case 2: Empirical Size: Multiple Predictors

I Multiple predictor simulation DGP:

yt = α+ x′t−1β + ut, t = 1, . . . , T,

xt = ρxt−1 + vt, t = 0, . . . , T,

where xt := (x1,t, ..., xK,t)
′ is a K × 1 vector of predictor variables,

β is a K × 1 vector of parameters, α = 0.25, ρ is a K ×K diagonal
matrix with common diagonal element ρ, i.e., ρ := diag(ρ, ..., ρ).

I The AR parameter ρ is again set equal to 1− c/T with
c ∈ {−5,−2.5, 0, 2.5, 5, 10, 25, ..., 250}
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I The innovations are generated as (ut,v
′
t)
′ ∼ NIID(0,Σ) where

Σ =


σ2u σu,v1 0 · · · 0
σu,v1 σ2v1 0 · · · 0

0 0 σ2v2 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2vK

 (11)

with σ2u = 0.037, σu,v1 = −0.035, σ2v1 = ... = σ2vK = 0.045.

I Notice, therefore, that the �rst predictor, x1,t is endogenous (with an
endogeneity correlation parameter φ1 = −0.83), while the remaining
predictors x2,t, ..., xK,t are exogenous.

I Empirical sizes of the Wald tests for the joint signi�cance of the K
predictors. NB RWB uses obvious VAR generalisation of Step 2.
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Table 4: Size of joint Wald Tests.

K = 3 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.085 0.352 0.385 0.366
-2.5 0.097 0.176 0.193 0.177

0 0.075 0.105 0.117 0.104
2.5 0.067 0.086 0.103 0.090
5 0.059 0.077 0.095 0.083
10 0.054 0.066 0.083 0.071
25 0.052 0.061 0.075 0.066
50 0.053 0.057 0.070 0.061
75 0.053 0.053 0.069 0.058
100 0.051 0.053 0.069 0.057
125 0.052 0.054 0.070 0.058
150 0.052 0.054 0.069 0.058
200 0.052 0.055 0.071 0.059
250 0.053 0.055 0.071 0.060
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Table 5: Size of joint Wald Tests.

K = 5 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.074 0.402 0.466 0.421
-2.5 0.091 0.239 0.281 0.241

0 0.082 0.157 0.186 0.156
2.5 0.069 0.120 0.156 0.129
5 0.063 0.105 0.138 0.116
10 0.062 0.086 0.120 0.098
25 0.053 0.067 0.100 0.080
50 0.052 0.059 0.089 0.069
75 0.051 0.055 0.085 0.063
100 0.049 0.053 0.082 0.062
125 0.049 0.053 0.080 0.062
150 0.046 0.052 0.078 0.061
200 0.047 0.051 0.079 0.060
250 0.044 0.049 0.077 0.058
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Table 6: Size of joint Wald Tests.

K = 10 predictors.

c W ∗,RWB
zx W ∗,FRWB

zx WEW
zx Wzx

-5 0.058 0.513 0.635 0.559
-2.5 0.072 0.398 0.505 0.425

0 0.087 0.306 0.406 0.324
2.5 0.075 0.238 0.342 0.262
5 0.067 0.191 0.301 0.225
10 0.060 0.141 0.244 0.175
25 0.050 0.089 0.174 0.118
50 0.048 0.067 0.142 0.091
75 0.046 0.060 0.129 0.081
100 0.046 0.056 0.120 0.077
125 0.043 0.053 0.117 0.074
150 0.042 0.052 0.116 0.071
200 0.039 0.049 0.116 0.070
250 0.036 0.050 0.116 0.072
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Moving on to ...

1. Introduction

2. The Basics of Bootstrap Hypothesis Testing

3. Some Popular Bootstrap Resampling Methods

4. Application 1: Unit Root Testing

5. Application 2: Testing for Bubbles

6. Application 3: Testing for Predictability of Returns

7. Conclusions



Conclusions

I Bootstrap methods provide a very powerful, albeit under-used,
toolkit for improved inference in time series econometrics.

I When appropriately implemented, bootstrap methods can
approximate the �nite sample null distributions of statistics, even in
highly complex settings where the null distributions of the statistics
depend in very complex ways on nuisance parameters, even in large
samples.

I The crucial property needed is that the bootstrap DGP, and hence
the generated bootstrap data, mimics the features of the original
data which impact on the (exact or limiting) distribution of the
statistic of interest. If the bootstrap DGP misses an important
feature of the data then it cannot be expected to perform well.

I As a result, if the user does not establish the limiting null distribution
of the statistic of interest then it is best to ensure the bootstrap
DGP mimics all of the data features in the original DGP.
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Thank you for listening!
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