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Introduction

We develop a class of invariant tests for the null hypothesis that a time series is a
martingale difference sequence against the alternative that it belongs to the class of
perturbed fractionally integrated (long memory) processes.

The tests are indexed by a user-chosen long memory parameter, d > 0, and are
locally most powerful (under Gaussianity) where the true long memory parameter,
d∗ say, coincides with this value.

d∗ is a nuisance parameter, present only under the alternative.

The class of tests contains a number of widely used tests as special cases, including
the Nyblom and Mäkeläinen (1983) and Kwiatkowski et al (1992) [KPSS] tests.

A taxonomy of limiting null distribution theory for the class of statistics (indexed by
d) is provided. These null distributions depend on d .

We compare the local power properties of the tests under appropriate Pitman drift
sequences.

Extensions to allow for the presence of a general form of weak dependence under the
null hypothesis and deterministic mean components are also considered.
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The Perturbed Long Memory Model

Consider the signal-plus-noise model:

yt = µt + εt , t = 1, ...,T (1)

µt =
t−1∑
j=0

bd,jηt , (2)

where the weights

bd,0 = 0, and bd,j :=
Γ (d + j)

Γ (d) Γ (1 + j)
=

d(d + 1) . . . (d + j − 1)

j!
, j = 1, 2, ... (3)

are the coefficients in the usual binomial expansion of (1− z)−d , d ∈ R+.

In the context of (1)-(2), εt and ηt are assumed to be mutually independent zero
mean weakly stationary, I (0), short memory processes with (finite) variances σ2

ε and
ω2σ2

ε, respectively, with σ2
ε > 0 and ω ≥ 0.
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The Perturbed Long Memory Model

For the set of weights in (3), we can equivalently write

µt = ∆−d
+ ηt

where, for a generic variable xt ,

∆−d
+ xt := (1− L)−dxt .I (t ≥ 1)

in which L is the usual lag operator such that Lkxt = xt−k , k = 0,±1,±2, ..., and
I(·) denotes the indicator function.

We therefore have that µt is a (long memory) type II fractionally integrated process
of order d , denoted I (d); see, for example, Marinucci and Robinson (1999). As a
consequence, yt is also I (d).

One interpretation of the model is that of an I (d) series, µt , which is observed
subject to an I (0) measurement error, εt ; that is, a signal-plus-noise model, where
the I (d) signal process (or long-run component), µt , is perturbed by the additive
I (0) noise (or short run component), εt .
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The Perturbed Long Memory Model

Additive trend-cycle decomposition models of these forms have been widely applied
in many fields, particularly in economics and finance.

A notable special case of (1)-(2) is the local level (or random walk plus noise)
unobserved components model of eg Harvey (1989).

This model obtains on setting d = 1 in (2), with εt and ηt both IID, such that µt

follows a random walk, and has a reduced form ARIMA(0, 1, 1) representation (where
the MA coefficient is non-positive) when εt and ηt are both white noise processes.

The ‘smooth trend’ unobserved components model of Clark (1987), see also Harvey
(1989), is a further special case, obtained for d = 2 with εt and ηt again both IID,
which has a reduced form ARIMA(0, 2, 2) representation.

Where d is fractional, (1)-(2) does not have a reduced form ARFIMA representation
except in the case where ηt is uncorrelated and εt admits an ARMA representation
in the fractional lag operator (see Johansen, 2008, Equation 2).
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The Perturbed Long Memory Model

The local level and smooth trend models can also be interpreted as regression
models in which the constant term evolves as a random walk and as an integrated
random walk, respectively.

The fractional long-run component in (1)-(2) allows considerable flexibility on the
weighting on past shocks compared to eg the local level and smooth trend models.

The parameter d determines the rate of decay of the autocovariance function of µt ,
and hence of yt . For 0 < d < 0.5, µt is (asymptotically) stationary. For d < 1, µt is
mean-reverting while for d > 1, µt is a cumulated mean-reverting process.
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The Perturbed Long Memory Model

The fractional plus noise decomposition in (1)-(2) has proved particularly useful in
modelling financial volatility.

Of particular note is the long memory stochastic volatility [LMSV] model for
financial returns considered in Breidt et al. (1998), Harvey (1998) and Bollerslev
and Jubinski (1999).

Here, returns, rt , are modelled as rt = κ exp{(µt + vt)/2}ut , where µt and vt are,
respectively, long and short memory processes, and µt , vt and ut are independent.
For the LMSV model, rt is a martingale difference sequence [MDS] if ut is a MDS.

Taking logs of the squared returns we then obtain that

log r 2t = µt + vt + log κ2 + log u2
t

which corresponds to a fractional plus noise model of the form in (1)-(2) for log r 2t
where the signal µt corresponds to (the long memory component of) the
log-volatility of returns and where the additive noise component is given by
εt = vt + log κ2 + log u2

t which is, in general, assumed to be an IID process.

Robert Taylor University of Essex
Econometrics Seminar, Exeter Business School March 19th, 2025
10 / 52



The Perturbed Long Memory Model

For integer d , estimation of (1)-(2) can either be conduced using a state space
representation of the model and an application of the Kalman filter algorithm, or by
estimating the reduced form of the model using (restricted) quasi MLE.

For the fractional case, estimation is considerably more complicated with
conventional ARFIMA-based estimation not, in general, possible.

A number of approaches have been considered which depend on the true long
memory parameter and the specific assumptions made about εt and ηt

Frederiksen et al. (2012) develop a semiparametric local polynomial Whittle
estimator of d which they show to be consistent for 0 < d < 1. Unlike most of the
literature which assumes that εt is IID, Frederiksen et al. (2012) allow for weak
dependence in εt .

Applying this estimator to daily log-squared return series for the 30 Dow Jones
Industrial Average [DJIA] stocks, Frederiksen et al. (2012) find that most of the
stocks yield estimates of d in the nonstationary (d > 1/2) region.
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Extant LBI tests for d = 1 and d = 2

For the local level model, testing for the presence of the I (1) stochastic trend
component, µt , has been widely studied.

These can be interpreted either as a test for the null that the series is I (0) against
the alternative that it is I (1), or as a test for the null of a constant level against the
alternative that the level of the series evolves as a random walk.

The most powerful invariant (likelihood ratio) test is a function of the true
(unknown) value of signal-to-noise ratio, ω2 - no uniformly most powerful test exists.

Nyblom and Mäkeläinen (1983) and Nyblom (1986), among others, develop an LBI
test of the null hypothesis that ω2 = 0, so that µt = 0 for all t, in the case where εt
and ηt are independent Gaussian white noises.

Kwiatkowski et al (1992) modify these LBI tests to allow the random walk to be
embedded within a more general weakly dependent process.

Nyblom and Harvey (2001) develop an LBI test for the d = 2 case, testing the null
that the series is I (0) against the alternative that it is I (2).

LBI tests have the considerable advantage over likelihood-ratio based tests in this
testing problem in that, being one-sided Lagrange Multiplier [LM] tests, they avoid
the need to estimate the model under the alternative hypothesis.
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Our Contribution

We generalise the LBI testing approach developed in the context of the local level
and smooth trend models to enable testing for the presence of the long memory
signal, µt , in (1)-(2) for any user-specified value of d .

The LBI testing principle only requires estimation of (1)-(2) under the null and so is
particularly convenient to use here given the inherent problems with estimating
(1)-(2) when d is fractional, noted above.

Our tests are therefore of the null hypothesis that a series is I (0) (either serially
uncorrelated or weakly stationary, depending on the assumptions made on εt),
against the alternative that the series is a perturbed fractionally integrated process.

For any d such that 0 < d ≤ 1/2, we show that a suitably scaled version of the LBI
statistic has a standard normal limiting null distribution, while for d > 0.25, the
scaled LBI statistic admits a non-standard limiting null distribution whose functional
form explicitly depends on d .

Where d > 1/2 this distribution is the so-called Cramér-von Mises function of a
standard fractional Brownian motion.

Extensions to allow for the presence of weak dependence in εt , and deterministic
mean components are considered.
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LBI Tests for Arbitrary d

In the context of (1)-(2) we are looking to test

H0 : ω
2 = 0 vs. (4)

H1 : ω
2 > 0 (5)

where ω2 is the signal-to-noise ratio of the fractional component, µt .

Writing µ := (µ1, . . . , µT )
′ and η := (η1, . . . , ηT )

′, we have that, for a given value
of d > 0, µ = C dη, where

C d :=


bd,0 0 0
bd,1 bd,0 0
bd,2 bd,1 bd,0 0
...

. . . 0
bd,T−1 bd,0

 .
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LBI Tests for Arbitrary d

To derive locally optimal tests of H0 against H1 we will assume that εt and ηt are
independent Gaussian white noise processes. The assumption of Gaussianity
facilitates the construction of LBI tests based on statistics with a simple structure.
All of the limiting results we give for these statistics hold under a considerably
weaker MDS assumption.

Under the Gaussianity assumption, it is straightforwardly seen from (1)-(2) that

y := (y1, . . . , yT )
′ ∼ NT

(
0, σ2

εC d(ω
2)
)
, (6)

where Nk denotes a multivariate Gaussian distribution of dimension k, and

C d(ω
2) := IT + ω2

C dC
′
d .

From (6), the testing problem (4),(5) is seen to be invariant under the group of
transformations y → γ0y and σ2

ε → γ0σ
2
ε, where γ0 is a positive scalar. A maximal

invariant for this testing problem is given by w := (y ′y)−1/2y .
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LBI Tests for Arbitrary d

Following King and Hillier (1985,p.99), an application of the Neyman-Pearson
Lemma yields that a most powerful invariant test for H0 against the point
alternative ω2 = ω2

1 > 0 in the context of (1)-(2), is defined by the critical region

LR := w′(C d(ω
2
1))

−1w < ℓ, (7)

for some constant ℓ.

While LR is useful for determining the (exact) Gaussian power envelope for the
testing problem (4),(5), the functional form of LR is a function of ω2

1 and, hence,
no uniformly most powerful test exists for this testing problem.
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LBI Tests for Arbitrary d

Noting that C d(0) = IT , it follows from King and Hiller (1985,p.99) that an LBI
test exists for the testing problem (4), (5).

An LBI test is defined as a test which, for a given testing problem, has a power
function which has maximum slope at the origin among all invariant tests.

From Ferguson (1967,p.235) an LBI test is defined by the critical region

∂ ln f (w|ω2)

∂ω2

∣∣∣∣
ω2=0

> ℓ∗ (8)

for some suitably chosen constant ℓ∗, where, aside from irrelevant constants,

ln f (w|ω2) := −T

2
logw′

C d(ω
2)−1w (9)

is the natural logarithm of the likelihood function of w.
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LBI Tests for Arbitrary d

Consequently, using an application of King and Hiller (1985, Eqn.(6), p.99), this
implies that an LBI test of H0 against H1 rejects for large values of the statistic

ST (d) :=
y ′C dC

′
dy

y ′y
=

∑T
t=1

(∑T
i=t bd,i−tyi

)2
∑T

t=1 y
2
t

. (10)

For d = 1, the weights are such that b1,j = 1, j = 0, 1, 2..., and ST (1) coincides with
the statistic L. Rejecting for large values of L in this setting is a LBI test for the null
that yt is a Gaussian white noise process against the alternative that it follows a
Gaussian random walk plus noise model.

Setting d = 2 in (14), ST (2) coincides with the ℓIRW statistic (albeit applied to y

rather than to regression residuals) of Nyblom and Harvey (2001) which is LBI for
testing the null that yt is a Gaussian white noise process against the alternative that
it follows a Gaussian integrated random walk plus noise model.

The LBI test in (14) generalises these to allow testing the null that the series is a
Gaussian white noise process against the alternative that it follows a Gaussian
fractionally integrated, I (d), plus noise model.

Robert Taylor University of Essex
Econometrics Seminar, Exeter Business School March 19th, 2025
20 / 52



Two Discussion Points: 1. Type II versus Type I models

DGP (2) defines µt to follow a type II fractionally integrated process. In contrast, a
type I fractionally integrated process takes the form (1− L)dµt = ηt , giving

µt =
∞∑
j=0

bd,jηt−j .

As is well known, this model is only well defined for d < 1/2. So although an LBI
test of H0 versus H1 could potentially be developed, it would be restricted to
stationary values of d . We therefore prefer the type II model for µt because it allows
us to test any d > 0, rather than restricting d to be in the range (0, 1/2).

That said, the LBI test designed for the type II case would likely still have power
against H1 in the type I case.
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Two Discussion Points: 2. Correlated Components

In common with the majority of the literature on unobserved components models,
including on LMSV models, we have assumed that εt and ηt in (1)-(2) are
independent.

However, the unobserved components literature has considered models which allow
for a contemporaneous correlation between the shocks - in our case εt and ηt .

This obtains on setting E(ϵt , ηt) = ρωσ2
ε, where |ρ| ≤ 1; a special case thereof,

where ρ = 1, is the single innovation form of (1)-(2) where yt = µt + εt with µt

generated by µt = ω∆−d
+ εt .

Provided ω > 0, the correlation between ϵt and ηt is measured by ρ and is scale
independent of ω and σ2

ε. Otherwise, ρ is not defined, the component µt vanishing
from (2).
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Two Discussion Points: 2. Correlated Components

For this model, y ∼ NT (0, σ
2
εDd(ω)) where Dd(ω) := C d(ω

2) + ρω(C d + C ′
d).

Hence, the density of the maximal invariant w, is given by (9) but with C d(ω
2)

replaced by Dd(ω).

As would be expected, (14) defines the LBI test of H∗
0 : ω = 0 against H∗

1 : ω > 0
when ρ = 0.

When ρ ̸= 0, an application of (8) yields that the LBI test of H∗
0 against H∗

1 rejects
for large values of the statistic

S∗
T (d) :=

y ′C dy

y ′y
=

∑T
t=1 yt

(∑t−1
j=0 bd,jyt−j

)
∑T

t=1 y
2
t

=
T−1∑
j=0

bd,j

∑T
t=j+1 ytyt−j∑T

t=1 y
2
t

=
T−1∑
j=0

bd,j r̂j .

where r̂j denotes the jth sample autocorrelation of yt .
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Two Discussion Points: 2. Correlated Components

Notice that the functional form of S∗
T (d) does not depend on ρ.

Noting that bd,j ∼ jd−1, we have that

S∗
T (d) ≃

T−1∑
j=1

jd−1 r̂j

.

Setting d = 0, the left hand side of the approximation simplifies to the statistic
upon which the LBI test (which is also a uniformly most powerful test) of Tanaka
(1999) for testing H0,d : d = 0 against H1,d : d > 0 in the case where yt = ∆−d

+ ηt ,
with ηt a Gaussian white noise, is based; see Tanaka (1999, Eqn.(40), p.560).

Consequently, choosing d arbitrarily close to zero, a test which rejects for large
values of S∗

T (d) has approximately the same critical region as the LBI test of
H0,d : d = 0 against H1,d : d > 0 in the non-perturbed fractional model.
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Null Asymptotics

We establish the limiting null distributions of the family of ST (d) statistics, indexed
by d . As we will show, these limiting distribution fall into three different categories,
depending on whether d ∈ (0, 1/4], d ∈ (1/4, 1/2], or d ∈ (1/2,∞).

For each of these ranges different scalings and/or centerings of ST (d) are required
to obtain a convergent distribution, free of nuisance parameters. In each case, these
terms are deterministic and so the LBI property is preserved.

In doing so, we can considerably relax the Gaussian IID assumption on {εt} to the
following MDS assumption which is conventional in the long memory literature.

Assumption 1

{εt ,Ft}t∈Z is a stationary MDS with E(ε2t | Ft−1) = σ2
ε which is a.s. constant, and

supt∈N E(ε4t ) < ∞.

We will discuss later how this could be further relaxed, at least for some values of d ,
to allow for weak dependence in εt .
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Null Asymptotics

In particular, for d ∈ (0, 1/2], it will prove convenient, in terms of developing a
statistic with a limiting null distribution free of nuisance parameters, to develop an
equivalent test based on the centred statistic.

S2,T (d) := ST (d)−
T−1∑
i=0

b2
d,i .

For d ∈ (0, 1/4] we also need to define the quantity

σ2
T :=

T∑
t=2

t−1∑
s=1

a2T (s, t),

where

aT (s, t) :=
s−1∑
i=0

bd,ibd,i+t−s
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Null Asymptotics

For d ∈ (1/4, 1/2] the limiting null distribution will feature the limiting RV∫ 1

0

∫ r

0

fd(r , q)dW (q)dW (r) := I(fd ,W )

where W (·) denotes a standard Brownian motion on [0, 1], and the function

fd(r , q) :=

{∫ 1

0
(x − r)d−1

+ (x − q)d−1
+ dx if r , q ∈ [0, 1] with q < r ,

0 otherwise;
(11)

where (a)+ := max{a, 0}, and d ∈ (0, 1).
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Null Asymptotics

For d ∈ (1/2,∞) the limiting null distribution will feature the limiting RV

Wd(r) :=

∫ r

0

(r − q)d−1dW (q). (12)

The process Wd(·) is the familiar type II fractional Brownian motion of order d .

Observe that W1(r) = W (r).
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Null Asymptotics

Theorem 1

Consider the statistic ST of (14). Let yt be generated according to (1)-(2) under H0 of
(4). Then under Assumption 1,

(i) if d ∈ (0, 1/4], then
(Tσ−1

T )S2,T (d)⇝ N[0, 4];

(ii) if d ∈ (1/4, 1/2], then

(Tb2
d,T )

−1S2,T (d)⇝ 2I(fd ,W )− (2d)−1;

(iii) if d ∈ (1/2,∞), then

(Tb2
d,T )

−1ST (d)⇝
∫ 1

0

W 2
d (r)dr .
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Null Asymptotics

The limiting distribution in part (iii) reduces for d = 1 and d = 2 to the limiting
results given in Nyblom and Mäkeläinen (1983) and Nyblom and Harvey (2001),
respectively.

In the I(1) case the limiting null distribution
∫ 1

0
W 2(r)dr is the so-called Cramér-von

Mises distribution of order 1, CvM(1), which has been widely tabulated in the
literature.

In the I(2) case this is seen by noting that W2(r) =
∫ r

0
(r − q)dW (q)

a.s.
=
∫ r

0
W (q)dq,

by an application of the (stochastic) Fubini Theorem, which is the integrated
Brownian motion form of the process given in NH and is tabulated there.

For d > 1/2 we will refer to the limiting distribution in part (iii) of Theorem 1 as a
fractional Cramer-von Mises distribution, or CvM(d).

The limiting distribution in part (ii) appears to be new to the literature.
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Asymptotic Local Power

The fixed alternative H1 is that ω2 > 0, and hence that µt evolves as an I (d)
process.

As with most testing problems, a more useful measure for assessing the relative
power of competing tests is to look at local power under Pitman drift sequences.

The Pitman drift rate needs to relate to the true long memory parameter, say d∗,
which is a nuisance parameter only present under the alternative.

The Pitman drift rate for our testing problem is of the form

ω = ωd∗,T =
c

Tdd∗,T
≈ c

T d∗

Notice that this Pitman rate does not depend on the value of d used in constructing
the LBI statistic, ST (d).
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Asymptotic Local Power

Rather than detail the representations for these asymptotic local power functions
(these are given in the paper) I will present simulations of the local power functions
of the tests for selected values of d in the simulation results later.

This will allow us to compare the local power of ST (d) for various choices of d and
d∗. Recall that the LBI property holds only where d = d∗.

Based on these results we will make some practical testing recommendations, given
that d∗ is not known in practice, but d can be chosen by the practitioner.
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Deterministic Components

Replace (1) by
yt = dt + µt + εt (13)

where µt and εt are as defined for (1) and where dt is a deterministic kernel of the
form dt = x′tβ where xt is a (p × 1), p < T , fixed sequence, whose first element is
fixed at unity throughout (so that (13) contains an intercept term), with associated
parameter vector β.

In the context of (13), the testing problem (4)-(5) is invariant under the group of
transformations y → γ0y + Xγ, β → γ0β + γ and σ2

ε → γ2
0σ

2
ε, where

X := [x1, . . . , xT ]
′, γ0 is a positive scalar and γ a real (k × 1) vector.

A maximal invariant for this hypothesis testing problem is now given by
wx := (e′e)−1/2Pe, where P is the (T − k)× T matrix such that PP′ = IT−k ,
P′P = M, M := IT − X(X′X)−1X′, and e := (ê1, ..., êT )

′ = My is the vector of OLS
residuals from the regression of y on X.
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Deterministic Components

Notice that {êt} are the OLS residual from estimating (13) under H0.

Applying (8), we obtain that, under Gaussianity, the LBI test rejects for large values
of the statistic

ST ,x(d) :=
e ′C dC

′
de

e ′e
=

∑T
t=1

(∑T
i=t bd,i−t êi

)2
∑T

t=1 ê
2
t

. (14)

In this setting, again using King and Hillier (1985,p.99), the decision rule for the
MPI test for H0 against the point alternative ω2 = ω2

1 > 0, again under the
Gaussianity assumption, is defined by the critical region,

LRx := w′
x(PC d(ω

2
1)P

′)−1wx < ℓ (15)

for some constant ℓ, where wx and P are as defined in the previous paragraph.
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Deterministic Components

Assume that the vector xt satisfies the following conditions (see Phillips and Xiao,
1998): there exists a scaling matrix δT and a bounded piecewise continuous function
x(r) such that: (i) δTx⌊Tr⌋ → x(r) as T → ∞ uniformly in r ∈ [0, 1], and (ii)∫ 1

0
x(r)x(r)′dr is positive definite.

In this case for the d = 1 case, it is known that

T−1ST ,x(1) ⇒
∫ 1

0

Wx(r)
2dr (16)

where

Wx(r) := W (r)−
∫ 1

0

x(r)′dW (r)

(∫ 1

0

x(r)x(r)′dr

)−1 ∫ r

0

x(s)ds, r ∈ [0, 1] (17)

where it is recalled that W (·) is a standard Brownian motion process.

In the case where xt = 1, Wx(r) = W (r)− rW (1) =: B0(r), r ∈ [0, 1], a standard
Brownian bridge process, and the right member of (16) is a first level Cramér-von
Mises distribution with one degree of freedom, denoted CvM1(1).

Where xt = (1, t)′, Wx(r) := B0(r)− 6r(1− r)
∫ 1

0
B0(s)ds, r ∈ [0, 1], a standard

second level Brownian bridge process.
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Deterministic Components

We are currently working on the corresponding limiting distributions in the fractional
d case. This is complicated somewhat by the fact that the inner summation in the
LBI statistics appears to only be reversable for integer values of d .

So far, we have a complete set of limiting null distributions for the case where
xt = 1. Define the version of ST (d) calculated from the residuals obtained under the
null when xt = 1 as Sµ

T (d).

In particular, the result in part (i) of Theorem 1 still holds for a centred version of
Sµ
T (d); that is,

(Tσ−1
T )Sµ

2,T (d)⇝ N[0, 4]

where Sµ
2,T (d) := Sµ

T (d)−
∑T−1

i=0 b2
d,i .

For part (iii), the limiting null distribution changes:

(Tb2
d,T )

−1Sµ
T (d)⇝

∫ 1

0

(
W̃d(r)−W (1)

∫ 1

r

(q − r)d−1dq

)2

dr

where W̃d(r) :=
∫ 1

r
(q − r)d−1dW (q).
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Deterministic Components

We believe the result for part (i) should continue to hold for a much wider set of
deterministic regressors, such as the conditions of Phillips and Xiao (1998) given on
the previous slide. For part (iii) it should hold for the appropriate projection of x(r)
under this type of conditions.

For part (ii) the limiting null distribution of (Tb2
d,T )

−1Sµ
2,T (d) again changes from

that for the no deterministics case, and a formula is provided in the paper. It may be
possible to obtain a representation for general x(r).
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Deterministic Components

Given xt contains a constant, for the correlated components model considered
earlier, the first derivative of the log-likehood can be shown to be constant with
respect to the data and a LBUI test can be formed from the second derivative of the
log likelihood.

This LBUI test can be shown to coincide with the LBI test for the uncorrelated
components model, ST ,x(d) in (14). Consequently in this case the approximate
relation to Tanaka’s fractional integration test statistic no longer holds.
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Weak Dependence in εt

The ST (d) statistic of (14) is LBI in the case where the observation error process
{εt} ∼ NIID(0, σ2

ε). Can it be modified to retain an asymptotically pivotal limiting
null distribution, in cases where there is time series dependence in {εt}?
In the d = 1 case Kwiatkowski et al. (1992) [KPSS] generalise (1) to the case where
the observation error process {εt} satisfies the α-mixing conditions of e.g. Phillips
and Perron (1988, p.336), with long run variance

σ2
L := lim

T→∞
T−1E

(
T∑
t=1

εt

)2

.

Under H0 in the d = 1 case it holds that (TσL)
−2y ′C 1C

′
1y ⇝

∫ 1

0
W (r)2dr . To

obtain an asymptotically pivotal statistic, KPSS suggest replacing σ2
L by the

consistent estimator,

σ̂2
L := y

′
y/T + 2

l∑
i=1

w(i , l)y ′
y−i/T ,

where y−i is the vector y lagged i periods and w(i , l) = 1− i/(l + 1), i = 1, . . . , l .
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Weak Dependence in εt

As discussed in e.g. Stock (1994,p.2797), the bandwidth parameter l must be
chosen to be o(T 1/2) to ensure that σ̂2

L →p σ2
L under both H0 and the local

alternative Hc that the long run variance of ηt is σ
2
Lc

2/T 2, where c is a non-negative
finite constant.

The KPPS-type statistic for d = 1 is therefore given by

SL
T (1) :=

T−2y ′C 1C
′
1y

σ̂2
L

whose limiting null distribution is
∫ 1

0
W (r)2dr , exactly as in the case where εt is

serially uncorrelated.

For d ∈ (1/2,∞) the same approach can be validly used, so that

(T 2b2
d,T )

−1 y
′C dC

′
dy

σ̂2
L

⇝
∫ 1

0

W 2
d (r)dr .
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Weak Dependence in εt

For d ∈ (1/4, 1/2] it is possible to correct the LBI statistic for serial correlation in εt
but it is considerably more involved, so I will not discuss the details further.

For d ∈ (0, 1/4] things are considerably more problematic! This is also a feature of
the LM fractional integration tests of Tanaka (1999) and Robinson (1994) where
one has to essentially (correctly) specify a parametric model for the serial correlation
in εt , eg ARMA(p, q). This is currently work in (very slow!) progress.

It is well know that the kernel-based serial correlation correction proposed in KPSS
can be quite poor in finite samples, especially where εt is positively serially
correlated, delivering considerably oversized tests. The finite sample efficacy of the
non-parametric correction is expected to be poorer the smaller the value of d
(essentially the smaller is d the more closely a positively autocorrelated weakly
dependent process will resemble an I (d) process).
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Numerical Simulations: Null Distributions

“Simulated distributions”:
We generated data under the null according to

yt = εt ∼ i .i .d .N(0, 1), t = 1, . . . ,T ,

and computed test statistics for M = 10, 000 replications with T = 1000.
Based on these test statistics we computed kernel-density plots.

“Limit distributions”:
Normal distributions analytically.
Brownian functionals simulated.

For now just mean-corrected statistics.

We also tried other values of T with very similar-looking results.
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Numerical Simulations: Null Distributions

Figure 1: Null distributions for d ≤ 0.5
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Numerical Simulations: Null Distributions

Figure 2: Null distributions for d > 0.5
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Numerical Simulations: Power Functions

We generated data under the alternative as

yt = ∆−d∗
+ ηt + εt , t = 1, . . . ,T ,

ϵ ∼ i .i .d .N(0, 1), ηt ∼ i .i .d .N(0, ω2),

and computed LBI(d) test statistics for M = 10, 000 replications with T = 1000.

For each pair (d∗, d) we calculated power as function of ω (for a range of relevant
Pitman-type local alternatives).

Note: d∗ is a feature of the DGP, while d is chosen by the econometrician when
calculating the LBI statistic.

Both non-mean-corrected and mean-corrected statistics.

We also tried other values of T with very similar-looking results.

Also plotted (asymptotic local) power envelope for comparison.
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Numerical Simulations: Power Functions

Figure 3: Power functions, non-mean-corrected statistics
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Numerical Simulations: Power Functions

Figure 4: Power functions, mean-corrected statistics
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Conclusions

We develop a class of LBI tests for the null hypothesis that a time series is a
martingale difference sequence against the alternative that it is a perturbed
fractionally integrated (long memory) processes.

The LBI tests are indexed by a user-chosen long memory parameter, d > 0, and are
locally most powerful (under Gaussianity) where the true long memory parameter d∗

coincides with this value.

The class of tests contains a number of widely used tests as special cases, including
the Nyblom and Mäkeläinen (1983) and Kwiatkowski et al (1992) [KPSS] tests.

A taxonomy of limiting distribution theory for the class of statistics (indexed by d) is
provided. These distributions depend on d , but can be straightforwardly simulated.
In the paper we also explore the accuracy of the approximation provided by the
asymptotic theory for finite T and propose a finite sample correction factor.

Comparing the power properties of the LBI tests under appropriate Pitman drift
sequences it is seen that they might better be called VLBI tests, V for very!
Knowledge of d∗ doesn’t seem to help a huge amount.

Extensions to allow for the presence of a general form of weak dependence under the
null hypothesis and deterministic mean components are also considered.
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