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Introduction and Motivation

Asset price bubbles tend to be characterised by a sudden and explosive increase in
the price of an asset without a corresponding increase in the fundamental value of
the asset (thereby representing a misallocation of resources), usually followed by a
subsequent destruction of value through a sharp and catastrophic price collapse.

As such, bubbles often presage economic recessions; indeed, the 2007/08 Global
Financial Crisis (GFC) was preceded by suspected price bubbles in the U.S. housing,
commodity and stock markets.

In the aftermath of the GFC, policymakers reacted by considering new rules for
macroprudential regulation and intervention.

Crucial to the effectiveness of such approaches is the availability of econometric
methods which can monitor the behaviour of prices in asset markets in real-time,
rapidly and accurately detecting emerging price bubbles

Robert Taylor University of Essex
Sheffield Workshop on Bubbles and Crashes 15th May 2024
4 / 74



Introduction and Motivation

To date the literature has mainly focused on tests for (and dating of) the presence
of historic periodically collapsing bubbles in asset price series. Seminal contributions
include Phillips, Wu and Yu (2011) [PWY] and Phillips, Shi and Yu (2015) [PSY].

A drawback of these historical bubble detection methods is that they are based on
one-shot tests and it is not obvious how they could be validly applied in a sequential
manner (as needs to be done in a real-time monitoring exercise), such that the
theoretical false positive rate [FPR] of the resulting procedure (defined as the
probability of incorrectly declaring at least one bubble episode during the monitoring
period) could be controlled.

There have been some attempts to develop FPR controlled real-time monitoring
procedures for asset price bubbles. These split the data into a training period and a
monitoring period. Homm and Breitung (2012) use a CUSUM-based detector, while
Astill et al. (2018) use a method based on comparing the maximum value of test
statistics computed in the training and monitoring periods.
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Introduction and Motivation

In practice, it would seem likely that information additional to the asset price series
under test could usefully be deployed in bubble detection methods.

Indeed, the extant literature suggests several potential covariates that could aid in
identifying periods of explosive behaviour.

For equities, dividend discount type models (Diba and Grossman, 1998; PSY) link
prices to the risk-free rate of interest, whilst the capital asset pricing model (Kim
and Kim, 2016) can embed time-varying volatility. Pricing equations for commodity
spot prices (Tsvetanov et al., 2016) indicate inventories (Kilian and Murphy, 2014)
and speculation measures (Singleton, 2014), whilst for cryptocurrencies, investor
sentiment (Chen et al., 2019) may play an important role.

Finally, given bubble behaviour in real estate may precede equity (Cabellero et al.,
2008) and commodity market bubbles (Phillips and Yu, 2011), potential housing
market covariates such as interest rates, disposable income and mortgage finance
(White, 2015) may be particularly useful.
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Introduction and Motivation

We explore how information from potential covariates can be incorporated into the
CUSUM-based real-time monitoring procedure for explosive asset price bubbles
developed in Homm and Breitung (2012).

We show that where dynamic covariates are present in the data generating process
[DGP], the FPR of the basic CUSUM procedure, which is based on the assumption
that prices follow a univariate DGP will not, in general, be theoretically controlled.

More positively, we establish that including relevant covariates in the construction of
the CUSUM statistics both controls the theoretical FPR of the resulting procedure
and can lead to substantial increases in the true positive rate [TPR] to detect an
emerging bubble episode.
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Introduction and Motivation

We additionally allow for time varying volatility in the innovations driving the model
through the use of a kernel-based variance estimator. A similar approach has been
developed in the univariate setting by Astill, Harvey, Leybourne, Taylor and Zu
(2023) [AHLTZ]

An empirical illustration to the dataset of Welch and Goyal (2008) demonstrates
that, in a pseudo real-time monitoring exercise, our proposed covariate augmented
CUSUM procedure detects explosive episodes associated with the Black Monday
crash and dotcom bubble sooner than approaches based on the assumption of a
univariate DGP.
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The Bubble Model

We consider a time series process {yt} generated according to the DGP,

yt = µ+ ut (1)

ut =


ut−1 + vt t = 1, . . . , ⌊τ1T⌋
(1 + δ)ut−1 + vt t = ⌊τ1T⌋+ 1, . . . , ⌊τ2T⌋
ut−1 + vt t = ⌊τ2T⌋+ 1, . . . , ⌊λT⌋

(2)

where 1 ≤ τ1 < τ2 ≤ λ, λ > 1, and where ⌊.⌋ denotes the integer part of its argument.

The initial condition, u0, does not affect the subsequent analysis provided it is
stochastically bounded, and we therefore set it to zero for expositional brevity.
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The Bubble Model

Under the specification in (2), ut follows the time-varying AR(1) process

∆ut = δtut−1 + vt , t = 1, . . . ,T , . . . , ⌊λT⌋ (3)

where ∆ := (1− L) is the usual first difference operator in the lag operator, L. The AR
coefficient δt can be seen to change from 0 to δ ≥ 0 at time t = ⌊τ1T⌋+ 1, before
reverting back to δt = 0 at time t = ⌊τ2T⌋+ 1.

In the context of the DGP in (1)-(2) we will be concerned with two sub-sample periods
of the series yt . The first of these is the period t = 1, ...,T , which will form the training
period in our analysis, and the second is the period t = T + 1, ..., ⌊λT⌋, which will form
the monitoring period for our procedure.
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The Bubble Model

Our model imposes that yt follows a unit root process over the training period
t = 1, ...,T , while over the monitoring period yt again follows a unit root process over
the sub-periods t = T + 1, ..., ⌊τ1T⌋ and t = ⌊τ2T⌋+ 1, ..., ⌊λT⌋, but crucially is subject
to potentially explosive behaviour in the period t = ⌊τ1T⌋+ 1, ..., ⌊τ2T⌋ if δ > 0. In
total, at the (notional) end of the monitoring period, there will be ⌊λT⌋ observations.

When δ > 0, if τ1 = 1 then the explosive regime will begin at the start of the monitoring
period, while if τ2 = λ, the explosive regime will still be on-going at the end of the
monitoring period.

In the context of monitoring for explosive autoregressive behaviour during the monitoring
period, our implicit null hypothesis is given by H0 : δ = 0, with the corresponding
alternative hypothesis given by, H1 : δ > 0.
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The Bubble Model

With regard to the error process, vt , in (2), we allow vt to be serially correlated,
heteroskedastic and (potentially) related to an (m × 1) vector of covariates, wt . In the
same spirit as Hansen (1995), we achieve this by assuming that vt satisfies Assumption 1.

Assumption 1

Let vt be generated by the pth order heteroskedastic autoregressive exogenous [ARX (p)]
process

α(L)vt = β(L)′wt + εt , εt = σtηt (4)

where α(z) := 1−
∑p

k=1 αkz
k , β(z) :=

∑q
k=0 βkz

k , and where the m-vector of
covariates, wt := (w1,t , ...,wm,t)

′, is non-stochastic with mean vector zero. The
innovations, ηt , form a sequence of serially uncorrelated conditionally heteroskedastic
innovations with mean zero and unit (unconditional) variance, with σt a (deterministic)
time-varying volatility function, such that εt has time-varying unconditional variance, σ2

t .

Precise conditions placed on wt , ηt , the time-varying volatility σt , and the polynomial
α(L) will be detailed subsequently in Assumption 2. In common with Hansen (1995),
these rule out unit root behaviour in wt , and so in many applications it will be natural for
the covariates specified in wt in (4) to constitute the first differences of other relevant
financial and/or macroeconomic time series.

Robert Taylor University of Essex
Sheffield Workshop on Bubbles and Crashes 15th May 2024
13 / 74



The Bubble Model

In the context of (4), the lag polynomial β(L) allows for, but does not require, lags of the
covariate wt to enter the DGP, but excludes the possibility of leads of the covariate
entering (4). This is because lead variables would clearly be unavailable to the
practitioner in real-time.

Notice that the variables in wt are not relevant covariates if β(L) = 0.

Under H0 : δ = 0, we have that ∆yt = vt for the full sample period t = 1, . . . , ⌊λT⌋, and
so from (4) we have that

∆yt =

p∑
k=1

αk∆yt−k +

q∑
k=0

β′
kwt−k + εt . (5)

This is a heteroskedastic autoregressive model in ∆yt augmented by the level and (up to)
q lags of the m covariates in wt . Defining zt := (∆yt−1, . . . ,∆yt−p,w

′
t ,w

′
t−1, ...,w

′
t−q)

′

and ϕ := (α1, . . . , αp, β
′
0, β

′
1, . . . , β

′
q)

′, (5) can be written more compactly as

∆yt = ϕ′zt + σtηt , t = 1, . . . ,T , . . . , ⌊λT⌋. (6)
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The Bubble Model

Assumption 2

Let the {(ηt ,wt)} sequence be defined on a complete probability space, and denote the natural
filtration generated by the random vector sequence {(ηt ,wt+1)} by {Ft}. Assume that:

1 For t = 1, . . . ,T , . . . , ⌊λT⌋, σt = σ(t/T ) where the function σ(·) is non-stochastic, has
support [0, λ], and is strictly positive, differentiable and uniformly bounded by a constant
M. Furthermore, the derivative of σ(·) is Lipschitz continuous over (0, λ).

2 Let ηt be a martingale difference sequence with respect to the filtration Ft , with conditional
variance ht := E(η2t |Ft−1) > 0 satisfying the condition that

E(ht) = plim
T→∞

(1/⌊Tλ⌋)
∑⌊Tλ⌋

t=1 ht = 1.

3 {ηt} is a strong mixing process with mixing coefficients of size −r/(r − 2), for some r > 2,
and E |ηt |2r < ∞.

4 α(z) ̸= 0 for all |z| ⩽ 1.

5 For all 0 ≤ κ ≤ λ, plim
T→∞

(1/⌊Tκ⌋)
∑⌊Tκ⌋

t=1 ztz ′tσ
2
t ht =

lim
T→∞

E(1/⌊Tκ⌋)
∑⌊Tκ⌋

t=1 ztz ′tσ
2
t ht = Ω(κ), where Ω(κ) is a positive definite matrix with all

the elements being finite and continuous in κ.

6 The vector of covariates wt satisfies lim sup
T→∞

1
⌊Tλ⌋

∑⌊Tλ⌋
t=1 E∥wt∥2+δ < ∞, for some δ > 0.
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The Bubble Model

Overall, our specification for the covariates is considerably more general than is imposed
by Kramer, Ploberger and Alt (1988) in the context of their CUSUM test, or by Hansen
(1995), Chang et al. (2017) [CSS] and Astill, Taylor, Kellard, and Korkos (2023) [ATKK]
in the context of their covariate unit root testing methods.

For example, the (covariance) stationarity assumption required to hold on the covariates
by Hansen (1995) is not imposed by our assumptions as we allow for unconditional
heteroskedasticity. Moreover, a version of the unconditionally homoskedastic finite-order
stationary vector autoregressive model specified for the covariates in CSS and ATKK,
generalised to allow for the possibility of unconditional heteroskedasticity, is also
permitted under our assumptions.

Hansen (1995), CSS and ATKK also require that the covariates are weakly dependent for
their large sample results to hold. Although we do not need to impose the condition that
the covariates are weakly dependent, the strength of the dependence allowed in the
covariates is restricted by Assumption 2 which, for example, rules out covariates with
(near-) unit roots.
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The Homm and Breitung (2012) CUSUM test

Using a training period of t = 1, ...,T , Homm and Breitung (2012) propose testing for
explosive behaviour in the monitoring period based on the CUSUM statistic:

S t
T :=

1

σ̃t

t∑
j=T+1

∆yj (7)

where T < t ≤ ⌊Tλ⌋ is the monitoring observation, and σ̃2
t is a consistent estimate of σ2

based on sample observations up to and including time t.

Homm and Breitung (2012) show that if the CUSUM statistic, S t
T , is computed

sequentially at dates t = T + 1, ..., ⌊λT⌋, then under the null hypothesis, H0, of no
explosive behaviour, the joint limiting (T → ∞) distribution of this sequence is given by,

T−1/2S
⌊Tr⌋
T ⇒ W (r)−W (1), 1 < r ≤ λ (8)

where “⇒” denotes weak convergence of the associated probability measures, and W (·)
is a standard Brownian motion on the interval [0, λ].
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The Homm and Breitung (2012) CUSUM test

Using Theorem 3.4 of Chu et al. (1996), Homm and Breitung (2012) show that under
H0, the result in (8) implies that, for any λ > 1,

lim
T→∞

Pr
(
|S t

T | > ct
√
t for some t ∈ {T + 1, ..., ⌊λT⌋}

)
≤ exp (−bα/2) (9)

where ct :=
√

bα + log(t/T ). The CUSUM monitoring procedure proposed in Homm
and Breitung (2012) then rejects H0 if S t

T > ct
√
t for some t > T , with an explosive

episode signalled at the first time point t in the monitoring period for which such an
exceedance occurs.

For such a (one-sided upper tail) test the appropriate asymptotic setting for bα used to
compute ct that would deliver size of at most α = 0.05 would be bα = 4.6, as this value
of bα would deliver a two-sided test with size at most α = 0.10 from the result in (9).
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The Homm and Breitung (2012) CUSUM test

It should be noted that these asymptotic settings for bα assume a monitoring period of
theoretically infinite length, and monitoring procedures based on these settings for bα can
be extremely conservative in practice, particularly during the early stages of the
monitoring period.

Homm and Breitung (2012) therefore provide finite sample settings in their paper (Table
8, p221), reporting values of bα that deliver a monitoring procedure with an expected
FPR of α ∈ {0.10, 0.05, 0.01} by the end of the monitoring period for various lengths of
the training and monitoring period, assuming the series yt is a pure unit process driven by
NIID(0,1) innovations.
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The Astill et al. (2023) CUSUM test

Astill et al. (2023) [AHLTZ] show that the CUSUM procedure of Homm and Breitung
(2012) does not have a theoretically controlled FPR if the errors display non-stationary
volatility; that is, if vt = σtηt with the volatility function, σt , displaying time-variation of
the form specified by Assumption 2.1.

To correct for this, AHLTZ propose a modified version of the CUSUM procedure of
Homm and Breitung (2012) where the S t

T statistic in (7) is replaced by the modified
CUSUM statistic,

SV t
T :=

t∑
j=T+1

∆yj
σ̂j,N

, t > T (10)

where σ̂2
j,N is a kernel smoothing based estimate for the spot variance, σ2

j := σ2(j/T ).
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The Astill et al. (2023) CUSUM test

The kernel smoothing estimator is defined as follows for j ⩾ N + 1:

σ̂2
j,N :=

N∑
s=0

ks (∆yj−s)
2 , with ks :=

K
(

s
N

)∑N
s=0 K

(
s
N

) (11)

where the kernel function, K(·), and bandwidth, N, satisfy some technical conditions
outlined in AHLTZ.

AHLTZ establish that the analogous CUSUM monitoring procedure based on SV t
T rather

than S t
T is able to control the FPR when the innovations vt in (2) exhibit time varying

volatility, while retaining finite sample TPRs (“power”) close to those of the standard
CUSUM procedure of Homm and Breitung (2012) when the innovations are
homoskedastic.
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Extant Tests

Henceforth, we will refer to a monitoring procedure based on the S t
T statistic as the

(standard) CUSUM monitoring procedure and that based on the SV t
T statistic as the

CUSUMV monitoring procedure.

The validity of both CUSUM and CUSUMV relies on the assumption that ∆yt is serially
uncorrelated under H0. This assumption is obviously violated if vt is generated by (4) with
p > 0, but it is also, in general, violated (even if p = 0) when β(L) ̸= 0 if, for example,
either the covariates, wt , are serially correlated, or q > 0, or both. As a result the large
sample results in (8) and (9) will not necessarily hold in such cases for S t

T and SV t
T .

Consequently, implementing CUSUM and CUSUMV using the critical values from Homm
and Breitung (2012) would result in monitoring procedures where the (theoretical) FPR
would not necessarily be at the level expected by the practitioner.
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Covariate-augmented Monitoring Procedures

In the paper, we initially develop monitoring procedures that assume that the vector of
covariates, wt , has zero mean. This is restrictive in practice, so in the interest of time we
will move straight to our preferred monitoring procedure that allows for a non-zero mean
in the vector of covariates.

In order to allow for covariates with non-zero mean, we replace Assumption 1, with
Assumption 3

Assumption 3

Let vt be generated by the pth order heteroskedastic autoregressive exogenous [ARX (p)]
process

α(L)vt = β(L)′(xt − cx) + εt , εt = σtηt , (12)

where cx denotes the mean vector of the covariates, xt . All other aspects of (12) remain
as previously specified for wt , appropriately redefined to the non-deterministic component
of the covariate, xt − cx =: wt , where relevant.
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Covariate-augmented Monitoring Procedures

Under Assumption 3, in order to obtain CUSUM statistics which are exact invariant to cx
we need to augment the null regression (5) by a constant term, viz,

∆yt = µ+

p∑
k=1

αk∆yt−k +

q∑
k=0

β′
kxt−k + εt , εt = σtηt (13)

Notice that inclusion of the constant term in (13) also entails that we can allow for the
possibility of a non-zero mean in ∆yt , and, hence, a deterministic linear trend in yt .

For ease of notation, re-write the null regression in (13) as

∆yt = φ′gt + εt , εt = σtηt , (14)

where φ := (µ, α1, . . . , αp, β
′
1, . . . , β

′
q)

′, gt := (1,∆yt−1, . . . ,∆yt−p, x
′
t , x

′
t−1, . . . , x

′
t−q)

′.
Notice the regression has 1 + p + qm regressors.
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Covariate-augmented Monitoring Procedures

Consider the infeasible re-weighting of (14), based on the true volatility function σt ,
given by

∆yt
σt

= φ′ gt
σt

+ ηt , t = 1, . . . ,T , . . . , ⌊λT⌋. (15)

The associated (infeasible) recursive WLS estimator for φ at each point in the monitoring
sample is then given by

φ̃W
t :=

 t∑
j=max(p+2,q+1)

gjg
′
j

σ2
j

−1  t∑
j=max(p+2,q+1)

gj∆yj
σ2
j

 , t = T + 1, . . . , ⌊λT⌋

and the corresponding (infeasible) recursive residuals based on the recursive WLS
estimates are defined as

eWt := ∆yt − (φ̃W
t−1)

′gt , t = T + 1, . . . , ⌊λT⌋. (16)
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Covariate-augmented Monitoring Procedures

Following the proof strategy given for Theorem 1 of Kramer, Ploberger and Alt (1988),
we show that, under the no bubble null hypothesis, the associated (infeasible) sequence
of CUSUM statistics

SWM t
T :=

t∑
j=T+1

eWj /σj , t > T

satisfies

T−1/2SWM
⌊Tr⌋
T ⇒ W(r)−W(1), 1 < r ≤ λ

where W(·) is a standard Brownian motion on [0, λ], such that we recover the usual
Brownian motion-based limiting null distribution as obtained by the original CUSUM
statistic of Homm and Breitung (2012).
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Covariate-augmented Monitoring Procedures

To obtain a feasible version of SWM t
T , we need to replace the true volatilities by

estimates thereof.

To that end, we define the double array of OLS residuals from (14) as,

f ∗i,t := ∆yi − (φ̂t)
′gi , i = max(p + 2, q + 1), . . . , t, t = T + 1, . . . , ⌊λT⌋. (17)

Based on these residuals we consider the following spot variance estimator

σ̃2
j,N,t :=

N∑
s=0

ks(f
∗
j−s,t)

2, ks :=
K

(
s
N

)∑N
s=0 K

(
s
N

) , (18)

for some kernel function, K(·), and bandwidth parameter, N.
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Covariate-augmented Monitoring Procedures

Using these residuals we can then define the feasible recursive WLS estimator

φ̂W
t :=

 t∑
j=N+max(p+1,q)

gjg
′
j

σ̃2
j,N,t

−1  t∑
j=N+max(p+1,q)

gj∆yj
σ̃2
j,N,t

 , t = T + 1, . . . , ⌊λT⌋

where σ̃2
j,N,t is defined applying the formula in (18) to the {f ∗i,t} residuals defined in (17).

A feasible version of the sequence of SWM t
T statistics is then defined as,

SWMV t
T :=

t∑
j=T+1

êWj
σ̃j,N,j

, t > T (19)

where êWj := ∆yj − (φ̂W
j−1)

′gj .
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Covariate-augmented Monitoring Procedures

In order to establish the the limiting null distribution of the sequence of SWMV t
T

statistics we need to replace Assumption 2.5 on the regressors in the OLS regression, (6),
with a corresponding condition on the WLS regression with a constant included, (15).
Analogously to Assumption 2.5, this excludes the possibility of asymptotic collinearity
between the regressors.

Assumption 4

For all 0 ≤ κ ≤ λ, plimT→∞(1/⌊Tκ⌋)
∑⌊Tκ⌋

s=1 gsg
′
shs/σ

2
s = limT→∞(1/⌊Tκ⌋)

E(
∑⌊Tκ⌋

s=1 gsg
′
shs/σ

2
s ) = Θ(κ), where Θ(κ) is a positive definite matrix with all the

elements being finite and continuous in κ.
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Covariate-augmented Monitoring Procedures

Theorem 1

Let the data be generated according to (1)-(3), (12) under the null hypothesis H0 : δ = 0.
If Assumptions 2-4 hold, excluding Assumption 2.5, then, as T → ∞, it follows that

T−1/2SWMV
⌊Tr⌋
T ⇒ W(r)−W(1), 1 < r ≤ λ,

where W(·) denotes a standard Brownian motion on [0, λ], and

lim
T→∞

Pr
(
|SWMV t

T | > ct
√
t for some t ∈ {T + 1, ..., ⌊λT⌋}

)
≤ exp(−bα/2).

Theorem 1 establishes that the large sample properties of the CUSUMWMV procedure
again coincide with those which obtain for the original CUSUM procedure of Homm and
Breitung (2012).
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Covariate-augmented Monitoring Procedures

The practical implementation of SWMV t
T requires choices to be made for both the kernel

function and bandwidth used in constructing the nonparametric volatility estimator.

In both our simulations and empirical exercise we employed a Gaussian kernel with the
bandwidth, N, selected using the local cross validation criteria recommended by AHLTZ.

If it were known that the volatility function σt = σ < ∞, for all t, then one could
consider a simplified version of the SWMV t

T statistic given by σ̃−1
t

∑t
j=T+1 e

∗
j where

σ̃2
t := (t −max(p + 1, q))−1 ∑t

j=max(p+2,q+1) f
∗
j,t

2, and where e∗j := ∆yj − φ̂′
j−1gj are

recursive residuals with φ̂j−1 the recursive LS estimator of the coefficient vector φ in (14).

Notice that the constancy of the volatility function means that the WLS transformation
is no longer needed when computing the recursive residuals so that the numerator of this
statistic is based on the recursive residuals e∗j rather than êWj .
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Finite Sample Simulations

We generated data according to (1)-(2), initialised at u0 = 100 (so that bubbles in our
series are generally upwardly explosive and, hence, empirically relevant), setting µ = 0
without loss of generality.

We set T = 219 so that monitoring begins at time t = 220 and we assume monitoring
ends at time λT = 255. Under the null we set δ = 0, whereas under the alternative we
set δ = 0.005, ⌊τ1T⌋ = 220 and ⌊τ2T⌋ = λT , such that yt follows a unit root process
during the training period, before switching to an explosive regime which starts when
monitoring commences and continues until the end of the monitoring period.

For the error term vt and the covariate wt , we use an unconditionally heteroskedastic
extension of the simulation DGP detailed in section 5.1 on page 143 of Chang et al.
(2017) [CSS]:

vt = α1vt−1 + βwt + ε1,t , (20)

wt+1 = ρwt + ε2,t , (21)

with the covariate initialised at w0 = 0.
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Finite Sample Simulations

The variance matrix of the innovation vector, (ε1,t , ε2,t)
′, was generated according to:(

ε1,t
ε2,t

)
∼ NIID(0,Σt), Σt :=

[
σ2
1,t σ12,t

σ12,t σ2
2,t

]
(22)

in which σ2
1,t , σ

2
2,t are subject to smooth upward shifts in volatility of the form:

σ1,t := 1 + (
√
4− 1) [1 + exp(−θ(t − 219))]−1 (23)

σ2,t := 1 + (
√
4− 1) [1 + exp(−θ(t − 219))]−1 (24)

with θ = 0.25; that is, a logistic smooth transition in volatility from 1 to
√
4 centred on

the end of the training period.
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Finite Sample Simulations

In the paper we report results for the following four cases for Σt :

(a) σ2
1,t = σ2

2,t = 1 and σ12,t = σ12, in each case for all t, such that ε1,t and ε2,t are
homoskedastic with a fixed correlation of σ12. This corresponds to the
homoskedastic model for (vt ,wt)

′ considered by CSS.

(b) σ1,t and σ2,t satisfy (23) and (24), respectively, while σ12,t = σ12σ1,tσ2,t , such that
the correlation between ε1,t and ε2,t remains fixed at σ12 for all t.

(c) σ2
1,t satisfies (23), σ2,t = 1, for all t, and σ12,t = σ12σ1,t , such that ε1,t exhibits time

varying volatility, but with the correlation between ε1,t and ε2,t fixed at σ12.

(d) σ2
1,t satisfies (23), σ2,t = 1, for all t, and σ12,t = σ12, such that ε1,t exhibits time

varying volatility with the correlation between ε1,t and ε2,t time-varying through σ2
1,t .

For the purposes of the talk, I’ll focus on some examples from cases (a) and (b).
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Finite Sample Simulations

We report rejection rates for the CUSUMWMV procedure, together with those of the
standard CUSUM procedure of Homm and Breitung (2012) and the CUSUMV procedure
of AHLTZ.

We also report results for a procedure, denoted CUSUMV∗, which is similar to the
CUSUMWV procedure but where the null regression is given by (6) but excludes the
covariate terms. The rationale behind including this is that including only lags of ∆yt will
still lead to a procedure that is able to deal with any serial correlation in ∆yt induced by
the presence of the covariate in the DGP without being able to exploit the covariate for
power gains under the alternative. It therefore provides an FPR controlled benchmark
against which to quantify the power gains from including the covariate.

The null regression we use in connection with CUSUMV∗ will not contain an intercept as,
when excluding the covariate from the regression, an intercept is only required if we
wished to allow for a deterministic linear trend in yt .
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Finite Sample Simulations

When performing the CUSUMWMV procedure we use the BIC applied to models
estimated by OLS to select the values of p and q in (13) based on data available up to
the first monitoring observation, setting the maximum permitted values of p and q to
pmax = 4 and qmax = 2, respectively. For the CUSUMV∗ procedure we also set the
maximum permitted value of p to pmax = 4.

If the minimum value of the BIC from the regression underlying the CUSUMV∗ procedure
is below that from (13) we determine that the candidate covariate is irrelevant and so
inference for the CUSUMWMV procedure is instead based on the CUSUMV∗ procedure.
Additionally, if the BIC selects p = 0 in the regression underlying the CUSUMV∗

procedure the CUSUMV∗ procedure reduces to the CUSUMV procedure of AHLTZ which
is based only on ∆yt .

As in Homm and Breitung (2012), we select a value of bα such that the FPR of the
monitoring procedures is equal to 0.10 by time t = 241 when the series yt is a pure unit
root process driven by NIID(0, 1) innovations and the covariate is an irrelevant white
noise process, i.e. β = ρ = α1 = 0 and σ12 = 0, σ2

1,t , σ
2
2,t = 1, for all t.
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FPR - Univariate DGP β = ρ = σ12 = α1 = 0. Homoskedastic

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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TPR - Univariate DGP β = ρ = σ12 = α1 = 0. Homoskedastic

CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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FPR - Univariate DGP β = ρ = σ12 = α1 = 0. Scenario (b)

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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TPR - Univariate DGP β = ρ = σ12 = α1 = 0. Scenario (b)

CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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FPR - β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2. Homoskedastic

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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TPR - β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2. Homoskedastic

CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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FPR - β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2. Scenario (b)

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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TPR - β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2. Scenario (b)

CUSUM:——, CUSUMV :——, CUSUMV∗:——, CUSUMWMV :——
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Simulations

Many, many more simulations are available in the paper!

Overall, the BIC does a decent job of discarding irrelevant covariates and including
relevant covariates.

Very little “power” is lost by using our proposed CUSUMWMV procedure relative to the
CUSUMV procedure of AHLTZ under the bubble alternative when the covariate is
irrelevant.

On the other hand, when a relevant covariate enters the DGP the standard CUSUM and
CUSUMV procedures display significant FPR distortions under the null, while the FPR of
the CUSUMWMV procedure is well controlled when the innovations are either
homoskedastic or exhibit time varying volatility.

The TPR gains from including a relevant covariate under the alternative are clearly seen
by examining the difference in rejection frequencies between CUSUMWMV and
CUSUMV∗, the latter being the only univariate procedure to exhibit decent FPR control
across all scenarios considered.
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Empirical Application

We now turn to an investigation into how our proposed monitoring procedures would
behave had they been applied ahead of Black Monday in 1987, and the dotcom bubble
episode of the early 1990s. To do so we use the monthly dataset of Welch and Goyal
(2008) which can be obtained from http://www.hec.unil.ch/agoyal/ as well as the 10
Year US Treasury Constant Maturity Rate which can be obtained from
https://fred.stlouisfed.org/series/GS10.

Following PSY, the series to be monitored for emerging bubble episodes is the
price-dividend ratio (Index/D12). As candidate covariates we consider: earnings (E12),
the book-to-market ratio (b/m), the treasury-bill rate (tbl), corporate bond returns on
AAA and BAA rated bonds (AAA and BAA), the 10 Year US Treasury Constant
Maturity Rate (GS10) long term yield (lty), net equity expansion (ntis), the risk free rate
(rfree), inflation (infl), long term rate of returns (ltr), long term corporate bond returns
(corpr), stock variance (svar), the cross sectional premium (csp), the dividend payout
ratio (de:=D12/E12), the earnings-price ratio (ep:=E12/Index), the default yield spread
(dfy:=BAA-AAA), the term spread (tms:=lty-tbl) and the default return spread
(dfr:=corpr-ltr).
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Empirical Application

We begin by examining how a monitoring exercise that began in January 1987, ahead of
Black Monday in October 1987, would have played out, examining the performance of
the CUSUMV , CUSUMV∗ and CUSUMWMV monitoring procedures.

For simplicity, and to help determine which covariates are individually useful, we apply
the CUSUMWMV procedure using only a single covariate at a time. Our training sample
begins in October 1968 such that its length is equal to T = 219, as in the Monte Carlo
simulations discussed earlier.

We use the same bandwidth selection rule as in the MC simulations and, again, use the
BIC to select p and q, as well as whether to include the covariates at all, in the
pre-whitening regression (13), setting the maximum permitted values of p and q to 4 and
2, respectively.

We set the value of bα = 0.0883 such that the monitoring procedures would have an
empirical FPR of 0.10 after 1 year if the price-dividend data were a pure unit root process
driven by NIID innovations under the null.
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Empirical Application

Before applying the CUSUMWMV procedure we first pre-test the candidate covariates for
a unit root using the training sample observations that would have been available at the
commencement of the monitoring procedure. We apply the (heteroskedasticity-robust)
wild bootstrap ADF unit root test of Cavaliere and Taylor (2009) at the 5% level
allowing for an intercept using the authors’ recommended settings

From this we found that the variables ltr, corpr and dfr can be used as possible covariates
in levels, whereas rfree, infl, svar, tms, E12, b/m, tbl, GS10, AAA, BAA, lty, ntis, csp, de,
ep and dfy need to enter in first differences.
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Empirical Application

At the start of the monitoring procedure applying the BIC indicates that the covariates
that are individually relevant for monitoring the price-dividend series are ∆(b/m), ∆(tbl),
∆(GS10),∆(AAA), ∆(BAA), ∆(lty), ltr, corpr, ∆(csp) and ∆(ep) and so we only report
results for the use of these covariates in the CUSUMWMV procedure.

For the CUSUMV∗ procedure the BIC selects a lag length of p = 0 so that this procedure
is identical to the CUSUMV procedure, we therefore report results only for the latter
procedure.

We report plots of the individual test statistics underlying the monitoring procedures, as
well as the boundary function ct

√
t, with a rejection of the no-bubble null indicated by

any test statistic exceeding this boundary function. The vertical dashed lines are used to
indicate the first date each monitoring procedure rejects the null of no bubble.
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Black Monday - b/m
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Black Monday - tbl
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Black Monday - AAA
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Black Monday - BAA
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Black Monday - LTY
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Black Monday - GS10
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Black Monday - ltr
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Black Monday - corpr
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Black Monday - csp
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Black Monday - ep
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Empirical Application

The plots of these CUSUM statistics suggest that the bubble episode prior to Black
Monday was short lived, with only a small window of opportunity for detection before the
collapse of the price-divided ratio.

Nonetheless, we see that the CUSUMWMV procedure would have detected this bubble in
July 1987 when using any of ∆(GS10), ∆(AAA), ∆(lty), ltr, corpr or ∆(ep) as a
covariate, which is earlier than the first rejection in August 1987 displayed by the
univariate CUSUMV procedure.

For the other covariates, the CUSUMWMV procedure first rejects at the same time as
CUSUMV , excepting ∆(csp) where the CUSUMWMV procedure marginally fails to reject
in August 1987.
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Empirical Application

We next examine how a monitoring procedure that began in January 1994, ahead of the
dotcom bubble, would have played out.

The monitoring procedures were performed exactly as for the Black Monday exercise,
except that the training sample of data was of length T = 72, running from January
1988 to December 1993, in order to avoid the abrupt collapse in the price-dividend ratio
witnessed at the end of 1987 following Black Monday.

This necessitated setting bα = 0.2672 to retain an FPR of 0.10 after 1 year, again
assuming the price-dividend data were generated by a unit root process driven by NIID
innovations. Once again, the BIC selected p = 0 for the CUSUMV∗ procedure so we
report results only for CUSUMV . For the CUSUMWMV procedure we report results only
for the set of covariates that were just seen to be useful in the context of the bubble
episode prior to Black Monday.
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Dot Com - lty
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Dot Com - ltr
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Dot Com - corpr
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Dot Com - ep
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Dot Com - GS10
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Empirical Application

The CUSUMV procedure which incorporates no covariate augmentation first rejects the
null of no bubble in January 1996.

The CUSUMWMV procedure rejects earlier when using any of these six candidate
covariates, with a first rejection in October 1994 when using corpr, March 1995 when
using ∆(ep), July 1995 when using ∆(AAA), ∆(GS10) or ltr and September 1995 when
using ∆(lty).
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Conclusions

We develop an extension of the CUSUM real-time bubble monitoring procedure of Homm
and Breitung (2012) which incorporates additional information from covariates, and is
designed to be robust to time-varying volatility in the data.

We show that the sequence of extended CUSUM statistics underlying our monitoring
procedure has the same joint limiting null distribution as the sequence of original
CUSUM statistics in Homm and Breitung (2012) has (under the more restrictive
conditions in their paper), so that a monitoring procedure based on the well-known
boundary function used in Homm and Breitung (2012) remains asymptotically valid.

Monte Carlo simulation evidence shows that, in contrast to the univariate monitoring
procedures of Homm and Breitung (2012) and AHLTZ, where a relevant covariate enters
the DGP our proposed procedure has a controlled FPR under the null. Moreover, under
the alternative the information from the covariate can lead to potentially significant gains
in TPR over these univariate procedures.

An empirical application to the dataset of Welch and Goyal (2008) highlights the
empirical usefulness of our covariate augmented monitoring procedure. In a pseudo
real-time monitoring exercise, for several plausible covariates it would have led to an
earlier rejection than the univariate procedure of AHLTZ for both the Black Monday and
dotcom bubble episodes.
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